دانلود رایگان مقاله انگلیسی استفاده از یادگیری شبکه بیزی هدفمند برای شناسایی مشکوک در شبکه های ارتباطی - اشپرینگر 2018

عنوان فارسی
استفاده از یادگیری شبکه بیزی هدفمند برای شناسایی مشکوک در شبکه های ارتباطی
عنوان انگلیسی
Using targeted Bayesian network learning for suspect identification in communication networks
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
13
سال انتشار
2018
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E8928
رشته های مرتبط با این مقاله
مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
هوش مصنوعی، شبکه های کامپیوتری
مجله
مجله بین المللی امنیت اطلاعات - International Journal of Information Security
دانشگاه
Department of Industrial Engineering - Tel Aviv University - Ramat Aviv - Israel
کلمات کلیدی
یادگیری شبکه بیزی هدفمند، شناسایی مشکوک، الگوهای رفتاری، حریم خصوصی، امنیت، یادگیری ماشین، جرایم سایبری، رفتار جنایی
doi یا شناسه دیجیتال
https://doi.org/10.1007/s10207-017-0362-4
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This paper proposes a machine learning application to identify mobile phone users suspected of involvement in criminal activities. The application characterizes the behavioral patterns of suspect users versus non-suspect users based on usage metadata such as call duration, call distribution, interaction time preferences and text-to-call ratios while avoiding any access to the content of calls or messages. The application is based on targeted Bayesian network learning method. It generates a graphical network that can be used by domain experts to gain intuitive insights about the key features that can help identify suspect users. The method enables experts to manage the trade-off between model complexity and accuracy using information theory metrics. Unlike other graphical Bayesian classifiers, the proposed application accomplishes the task required of a security company, namely an accurate suspect identification rate (recall) of at least 50% with no more than a 1% false identification rate. The targeted Bayesian network learning method is also used for additional tasks such as anomaly detection, distinction between “relevant” and “irrelevant” anomalies, and for associating anonymous telephone numbers with existing users by matching behavioral patterns.

نتیجه گیری

5 Conclusions


The results obtained by the considered use case show that the TBNL method obtained a 50% recall with a false positive rate of no more than 1%. Note that these results were obtained without accessing the contents of the CDRs; only their metadata were used and analyzed to characterize users’ behavioral patterns. The added value of the TBNL lies in its capability to efficiently manage the trade-off between model complexity and accuracy as well as in its ability to provide an informative graphical interface that allows security domain experts to investigate and find the behavioral patterns that can distinguish suspect from non-suspect users. Regarding this particular use case, the most influential characteristics for the classification task were found to be the durations of the CDRs and their derivatives in various crossovers, such as the average call duration with other suspects and the distribution of calls and text messages throughout the four quarters of the day. We used primary statistical metrics; however, we do not claim that the feature engineering task was optimal, and we leave this discussion for future research. The applied algorithm considers such new features during the BN learning stage while providing an intuitive presentation that subject matter experts can grasp easily.


بدون دیدگاه