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Abstract This paper proposes a machine learning applica-
tion to identify mobile phone users suspected of involvement
in criminal activities. The application characterizes the
behavioral patterns of suspect users versus non-suspect users
based on usage metadata such as call duration, call distribu-
tion, interaction time preferences and text-to-call ratioswhile
avoiding any access to the content of calls or messages. The
application is based on targeted Bayesian network learning
method. It generates a graphical network that can be used by
domain experts to gain intuitive insights about the key fea-
tures that can help identify suspect users. Themethod enables
experts to manage the trade-off between model complex-
ity and accuracy using information theory metrics. Unlike
other graphical Bayesian classifiers, the proposed applica-
tion accomplishes the task required of a security company,
namely an accurate suspect identification rate (recall) of at
least 50% with no more than a 1% false identification rate.
The targeted Bayesian network learning method is also used
for additional tasks such as anomaly detection, distinction
between “relevant” and “irrelevant” anomalies, and for asso-
ciating anonymous telephone numbers with existing users by
matching behavioral patterns.
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1 Introduction

Mobile devices have become essential tools for many human
actions—including, evidently, criminal and terrorist activi-
ties. Despite the secrecy surrounding the intelligence field,
it is well known (as leaked recently by ex-NSA contractor
Edward Snowden) that various intelligence agencies and law
enforcement authorities make extensive use of monitoring
communication channels as part of their daily operations and
consider suchmonitoring as a valuable source of intelligence
[36]. Data mining tools can be used to analyze billions of
communication records to filter out noise and extract objects
(following previous publications, hereinafter we will use the
terms “object,” “user” and sometimes “device” interchange-
ably) thatwill subsequently be investigated in amore detailed
and accuratemanner [35]. Such large-scale informationmon-
itoring poses great challenges regarding the data collection
technology used, privacy issues and the methods used to ana-
lyze the collected data. For example, it is essential to present
the relevant information (such as users’ behavioral patterns)
to domain experts who are not necessarily data scientists
in a clear and intuitive way (graphically if possible) while
maintaining a lowcomputational complexity that allows scal-
ability. The issue of privacy is of vital importance in such
large-scale monitoring efforts. Users privacy has garnered
wide public concern following the exposure of metadata-
monitoring programs operated by US defense agencies such
as the NSA as part of their increasing endeavors to fight ter-
rorism after the 9/11 attacks [22,36]. Because we rely on
metadata in our analysis, let us clearly state that there is
no doubt that metadata contains extremely sensitive infor-
mation and in many cases does not provide the required
level of privacy, as has been shown in many studies (e.g.,
[13,24]). In fact, De Montjoye et al. [13] showed that a few
spatiotemporal points of data are sufficient to uniquely iden-
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tify 90% of individuals in a credit card behavioral study.
Moreover, they showed that even data sets that convey only
coarse information at any or all of the dimensions provide
little anonymity. Note, however, that many of these studies
addressed settings in which private experimental data are to
be shared publicly (e.g., see [7,8]). The setting of this study is
somewhat different because it considers a situation in which
cellular providers or governmental agencies will use only
metadata for the initial screening, although they are often
authorized to access granular and private user communica-
tion content. Thus, a practical implication of this study is
not whether to expose or publish private data but whether
to try to provide some hierarchical layers of exposure in
which metadata is used as a first alternative to a procedure
that fully exposes user content. Moreover, although meta-
data provides less anonymity than anticipated, in many cases
it guarantees a higher level of privacy than full content expo-
sure. For example, Mayer et al. [24] specifically addressed
privacy protection against government surveillance by com-
paring the exposure of the full content of communications to
the exposure of only the metadata of those communications.
The authors specifically discussed the US National Secu-
rity Agency, which collects telephone metadata nationwide,
and investigated the privacy properties of telephonemetadata
to assess the impact of monitoring policies that distinguish
between content and metadata. Although the authors found
that telephone metadata can be used to re-identify users as
well as to reveal highly sensitive traits, their numerical studies
showed thatwhenusing themetadata only aportion (although
sometimes a significant one) of the telephone numbers could
be re-identified.

In this paper, we present a security data mining appli-
cation that relies on call detail records (CDR) metadata
generated by users’ cellular devices (“objects” as they are
referred to interchangeably) to identify suspects’ activities.
The proposed method applies a version of the target-based
Bayesian network learning (TBNL) model [18] to accom-
plish the following analytical tasks: (1) to organize and clean
the data and select the relevant features that can be used to
detect users’ anomalies behavior; (2) to determine whether
an anomaly is relevant to the suspect classification task (e.g.,
an anomaly related to a holiday period shared by many users
is less relevant for suspect classification); (3) to associate
anonymous devices to existing users based on their behav-
ioral patterns; and finally, (4) to classify suspect users and
non-suspect users based on selected explanatory variables
(features). The applied method supports the selection of var-
ious target features and analyzes these features in connection
to the abovementioned analytical tasks. It scores the various
features by measuring their information-theoretic gain with
respect to the class variable while effectively controlling the
trade-off between model complexity and classification accu-
racy [18]. As a result, domain experts can use the exposed

relations among the features to support a more detailed fea-
ture engineering process. The TBNL, as a classifier, provides
these insights along with a descriptive graphical represen-
tation. Unlike some “black-box” classifiers (e.g., neural
networks) and even some graphical Bayesian networks (such
as the Naïve Bayes and TAN methods), the TBNL method
yields a descriptive network in which the selected features
and their interactions are used to discriminate between pos-
itive (e.g., “suspects”) and negative (e.g., “non-suspects”)
values of the class variable. Moreover, the algorithm gener-
ates a different model for each class variable while providing
an intuitive interface. Consequently, domain experts can bet-
ter understand the behavioral patterns of the users through
which classification is performed [4,16]. The rest of the paper
is organized as follows: Sect. 2 provides some background
and a literature review. Section 3 describes the modified
TBNLmethod used in this study. Section 4 details the TBNL
method’s performance within the considered suspect identi-
fication use case, and Sect. 5 concludes the paper.

2 Background

This section provides an overview of some previous studies
and applications for suspect detection as well as a brief back-
ground on Bayesian network learning and classification that
is further elaborated in Sect. 3 with respect to the TBNL.

2.1 Machine learning applications for suspect detection

Many of the cybercrime and homeland security detection
applications that use machine learning methods involve both
fraud and suspect detection. Phua et al. [31] provided a com-
prehensive overview of methods for suspect identification
(see also [35]), while other works suggest specific model-
ing techniques such as neural networks and fuzzy rules for
detecting frauds (e.g., see [5,26,27]). Despite the similarity
between these two areas, they often differ from each other
with respect to the tuned models they use. For example,
classification accuracy, which is based on balanced true posi-
tive/negative rates, is often not an ideal performancemeasure
in homeland security applications (e.g., suspect identifica-
tion), mainly due to its sensitivity to false positive and false
negative errors [33,36]. Moreover, the datasets for suspect
detection are relatively small compared to fraud datasets
(e.g., credit card fraud) leading to a need for modeling tech-
niques that can use security experts’ existing knowledge to
enhance the identification rate. Often, these experts need
a convenient interface, possibly a graphical one, to gather
insights from the data. Overall, these reasons explain why
using fraud detection black-box classifiersmay not always be
suitable for identifying suspects [24,25,32]. In the homeland
security domain, several techniques have been suggested to
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reduce the false positive rate (FPR), which occurs, for exam-
ple, due to the imbalanced sizes between the suspect versus
non-suspect classes. Jensen et al. [20] suggested using mul-
tiple class values as opposed to binary classification. In [2]
and in [1], the authors analyzed the relationships between
entities using link analysis tools and text mining to locate
well-mapped suspects. In [33], Stolofo et al. suggested a cost-
based modeling for fraud and intrusion detection that is also
used in other cost-sensitive applications [17]. Other works
have suggested merging digital forensics techniques, natural
language processing andmachine learning principles [23] or,
for example, using keywords from the text of the webpages
of the suspected users [6]. Many of these techniques indeed
lead to lower false positive rates—otherwise the number of
possible suspects would be too high. Still, these techniques
often involve semantic reasoning and require an analysis of
the content rather than only the metadata; therefore, they
may encounter privacy constraints and higher computational
complexity.

2.2 Bayesian networks and classifiers

A Bayesian network (BN) is a probabilistic graphical model
that encodes the joint distribution of a set of random vari-
ables. A BN is a directed acyclic graph (DAG) consisting
of nodes and edges and a set of parameters that function
as conditional probability tables. Each node in the graph
represents a random variable (feature) of the domain, and
each edge between a pair of nodes represents a probabilistic
dependency between the associated random variables [29].
One of the advantages of BN models is that they can serve
as an intuitive “explanatory” tool that can depict qualitative
relationships in the data while maintaining a rigorous well-
defined mathematical model that compactly and efficiently
represents the domain [3,19]. A BN can be constructed
manually, based onknowledge and hypotheses about the rela-
tionships among the domain’s variables, or it can be obtained
“automatically” by applying learning algorithms to datasets.
The learning process is computationally expensive because
learning an optimal BN is known to be an NP-hard problem
[9]. Most BN learning methods divide the learning process
into two stages called structure learning and parameter learn-
ing. Structure learning remains an NP-hard problem in the
number of variables, whereas parameter learning can be per-
formed in polynomial time for a given structure [14]. In the
realm of Bayesian classifiers, there are two main approaches
to structure learning.One approach is canonical, and the other
is target oriented. The canonical methods follow two main
phases: in the first phase, a general BN (GBN) is learned
without explicitly considering the classification objective,
and in the second phase, the GBN can be used for differ-
ent analyses, including classification tasks. This two-phase
approach can in many cases lead to sub-optimal results [15].

In contrast, the target-oriented methods account for the tar-
get (class) variable during the learning phase and construct a
specificmodel around it that characterizes the rest of the vari-
ables as attributes to support the classification task. Two of
the simplest andmost popular target-orientedBN approaches
are the well-known Naïve Bayes model [14,28] and the tree-
augmented network (TAN) proposed by Friedman et al. [15].
These two cornerstone methods for Bayesian classifiers have
been widely implemented in many areas. Often, the target-
oriented approach is more effective for classification tasks
compared to the canonical approach because the complexity
of the targeted model is less affected by those connections
that are not directly associated with the target variable [21].
However, these target-orientedmethods leavevery little room
for structure learning because the model complexity is often
predefined, and it becomes an inherent property of themethod
(e.g., in a Naïve Bayes classifier all the variables are auto-
matically linked to the class variable and are assumed to be
conditionally independent). Thus, these methods are unable
to manage the trade-off between classification accuracy and
model complexity. This gap is addressed by the applied
TBNL model, which offers both a graphical target-oriented
interface and a parametric threshold to control model com-
plexity. With respect to the suspect detection task, the TBNL
provides security domain experts with the ability to graphi-
cally interpret the relations among the explanatory features
and the observed anomaly (as seen in Fig. 3 in the sequel)
while controlling the number of features that will be included
in the model. In fact, the TBNL can be used either as a clas-
sification model or as a preprocessing tool to decide which
features should be included in the classification model (see
Sect. 4). The TBNL is described in the next section.

3 The targeted Bayesian network learning method

3.1 TBNL modeling

TheTBNLmethod (see appendix) is designed to best approx-
imate the expected conditional probability distribution of
the class variable based on the conditioning variables in
the domain. First, denote a given target or class variable
by Xt∈X. Then, the rest of the domain’s variables can be
denoted by Xt = X\{Xt } or Xt , where X = (X1, . . ., XN )

is a vector of N random variables. The TBNL aims at
representing the true and unknown distribution p (Xt ) =∑

xt∈Xt
p (Xt |xt )p (xt ) by a BN based distribution q (Xt ) =

∑
xt∈Xt

p (Xt | zt ) p(xt ), where zt denotes a state of the

parents of Xt , Zt⊆Xt ⊂ X. The method forms a unique
dependence structure among related variables. It restricts Xt

to have no children while restricting its parents’ set to Zt .
Accordingly, Zt can be roughly considered as a “diluted”
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Markov blanket of Xt (containing its parents and their chil-
dren). A particular application of the TBNL (namely, the
classification and identification of suspected users based on
their behavioral characteristics) is presented in thiswork. The
TBNLmethod enables experts to control the network’s com-
plexity at the learning stage of the model, specifically, with
respect to the class variable. In particular, we calculate the
number of free parameters in the network as a conventional
definition for measuring its complexity:

k =
N∑

i=1

(|Xi | − 1)
Li∏

j=1

∣
∣
∣X

j
i

∣
∣
∣, (1)

where |Xi | is the number of values that Xi can take, and
∣
∣
∣X

j
i

∣
∣
∣

represents all possible values that the parent variable X j
i inZi

can take (Xi has Li parents). Constructing the TBNL follows
the adding-arrows principle [34], which generalizes the opti-
mal construction of Bayesian trees [11]. This principle aims
to minimize the Kullback–Leibler (KL) divergence between
the true probability distribution (p) and the one represented
by the BN (q).

dKL (p||q) =
∑

x1,...,xN∈X
p (x1, . . ., xN ) log

p (x1, . . ., xN )

q (x1, . . ., xN )
.

(2)

By substituting an expression of a BN in place of the term q
in Eq. (2), the following expression is obtained:
dK L (p(X)||q(X)) = −H (X)−∑

i I (Xi ;Zi )+∑
i H(Xi ),

where H(Xi ) is the entropy ascribed to the distribution of Xi ,
H (X) is the joint entropy ascribed to the joint distribution
of X and I (Xi ;Zi ) is the mutual information between the
variable Xi and its conditioning variables, namely its par-
ents in the network [34]. Because the two entropy terms are
independent of the BN model, the only term that could min-
imize the above KL divergence is the negative sum of the
mutual information weights [34]. This leads to the obser-
vation that maximizing the total mutual information weight
results in a BN that best approximates p(X), where the edges
pointing from parents to a node in the network are weighted
by the information gain in the parents about the correspond-
ing domain variable. It is critical to constrain the number of
parents of each node; otherwise, the network will always
be fully structured, with the maximum number of possi-
ble edges. Finding the best set of parents to maximize the
BN accuracy subject to a given complexity bound, measured
using Eq. (1), is an NP-hard optimization problem because
the number of possible edge combinations increases expo-
nentially in the number of domain variables [34]. In cases
where subject matter knowledge is available, the problem
of finding the most promising parents can be simplified. To

extract such knowledge, it is beneficial to provide the experts
with a convenient graphical interface in which the relations
between features are presented in an intuitive manner. The
TBNL method follows this approach. The expression for q
in Eq. (2) takes the form of the expected conditional proba-
bility distribution of the class variable given the conditioning
variables in the network, namely
q (Xt ) = ∑

xt∈Xt
p (Xt | zt ) p(xt ), instead of the joint prob-

ability distribution p (Xt ) = ∑
xt∈Xt

p (Xt |xt )p (xt ) of the
entire domain, where Xt∈X represents the target variable and
Xt = X\{Xt } represents the remaining domain variables.
This scheme leads to a specific BN structure that depends
on the application associated with the target variable. More
details of the TBNL algorithm can be found in the Appendix,
and it is also presented in [18].

3.2 The TBNL applications

In this paper, we demonstrate how aTBNLapplication can be
constructed to support suspect identification, anomaly detec-
tion and object classification. Each of the analytical tasks
described in Sect. 1 can be represented by a proper random
variable, which is then defined as the target variable for the
TBNLmodel (as seen in Fig. 3).Moreover, note that—unlike
other graphical Bayesian classifiers such as Naïve Bayes and
the TAN—the TBNL method considers a flexible trade-off
between the performance indicators derived from the target
variable and the model complexity defined by the number of
parameters, as seen in Eq. (1). In particular, by setting proper
threshold values, the TBNL provides a convenient graphical
presentation that can support reasoning and causality analysis
by the subjectmatter experts. The algorithmapplied to realize
the TBNLmethod attempts to find themost relevant variables
(features) with respect to the class variable. It does so by
first selecting the parent nodes thatmaximize the information
about that variable. Then, given those parents, it attempts to
maximize the total information among them. The algorithm
applies this concept by using a recursive procedure: for any
given variable, it selects the set of parents that maximize the
information over all the combinatorial options under a given
set of constraints. The information maximization is greedy
in the sense that, at each step, the procedure adds to the set of
parents by selecting the variable with the largest conditional
information gain given the existing parents. It stopswhen one
or more of the constraints are violated or when it runs out of
candidates. The applied algorithm first finds the parents of
the class variable. Then, it applies the same procedure to each
of the selected parents. The candidate parents for the class
variable are all the variables in the space, whereas the candi-
date parents for any other arbitrary variable (which must be a
parent of the class variable) are themembers in the set of their
parents that do not form cycles. Such a network is referred to
as a “nuclear family” network because the variables compris-
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ing it are those that are directly connected to the class variable
(and possibly also to other variables). Although this proce-
dure does not lead to a classical form of a Markov blanket
[29], the rest of the variables are considered to be less rele-
vant for classification purposes (SeeFig. 3).Other constraints
are implemented either as restrictions on the graph structure
and its complexity (e.g., the maximum number of parents
allowed for each variable) or as threshold conditions that are
related to information theory measures and calculated from
the network (e.g., the maximum allowed information weight
about variables represented as nodes in the network). Other
construction parameters are (1) an upper-bound parameter on
the relative percentage information gained about any variable
and (2) a minimum step-size parameter on the information
gain for each additional parent. Note that when the constraint
values are relaxed, one might obtain a complete network in
which all the possible edges are drawn in any possible direc-
tion as long as the network configuration still maintains the
DAG structure (all these configurations score an identical
total information). On the other hand, under tighter constraint
values, the order of the added edges becomes important to
obtain a network with a lower complexity. By setting a low
upper-bound parameter, one can generate a TBNL network
with low complexity, resulting in a network model that is
focused on the most relevant features for the classification
task. After this set of relevant features has been selected, the
user can either continue with a TBNL-based classification or
consider this step as a preprocessing step for selecting fea-
tures and then continue to perform classification with other
classification models (such as linear regression, SVM, Naïve
based or TAN) based on the selected features. Both options
are implemented in Sect. 4; the former option is defined as
TBNL classification and the latter as TBNL-based feature
selection (’TBNL-based FS’). The TBNL is found to be an
appealing learning model in cases where a graphical repre-
sentation is helpful for modeling an unbalanced and noisy
dataset because it provides an interactive interface through
which subject matter experts can integrate their knowledge
[18]. Such a case study is considered in this work by applying
the TBNL method to a suspect identification task based on
real-world cellular network data. It demonstrates a complete
data mining process (which is described in the next section)
while relying on feature selection, graphical representation
and control of the accuracy–complexity trade-off.

3.3 TBNL and a KDD scheme

When applying the TBNL to a real use case, one must
consider the overall operational procedure, which involves
preprocess steps such as data acquisition and feature selection
as shown in Fig. 1. In general, the figure follows the state-of-
the-art knowledge discovery in databases (KDD) approach
but with specific modifications for the TBNL implementa-

Fig. 1 TBNL-specific KDD implementation

tion in this case. The process comprises fourmain stages, and
each stage can be revisited several times, as needed. The first
stage includes an Extract, Transform, Load (ETL) process
for data cleaning and aggregation. Aggregation is a critical
step in suspect identification because it determines the proper
granularity level for each entity, resulting in a feature vec-
tor of corresponding characteristics for each entity type. The
second stage determines the model design and derives the
descriptive patterns that characterize the aggregated entity
types. In this stage, a data scientist and a subjectmatter expert
design the measures and the dimensions by which the data
are sliced. The third stage includes mutual information (MI)
and correlation tests between the various features and the
selected target variable (designated by a class label that can
change according to the analytic task) and among the fea-
tures themselves, the goal of which is to discard redundant
features. This stage is considered as a preprocessing step to
the feature selection step. The last stage is data mining itself,
in which the TBNLmethod is applied either for feature selec-
tion alone or both feature selection and classification. Note
that in both cases the feature selection is performed with
respect to the information gained about the target variable
from the features defined in the analytic task using Eq. (2).
At the same time, the complexity is constrained and shown
graphically using Eq. (1) as well as the other required com-
putations as described above.

The next section describes the implementation of the
TBNL for various analytical tasks including suspect iden-
tification and comparisons to the conventional classifiers.

4 Suspect identification by the TBNL model

The four suspect detection tasks listed in Section 1 were
defined by a leading homeland security company that pre-
ferred to remain anonymous. The list contains a set of
preliminary tasks that eventually lead to the classification
of users as suspects or non-suspects. Moreover, for the final
classification task, the company was required to maintain a
minimum recall of 50% along with an FPR no higher than
1%. Requiring such a low false detection rate is common in
situations with unbalanced classes that might lead to a large
number of suspects, and it is compatible with other analytical
approaches—including those that consider the unbalanced
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expected costs of statistical errors [17,20,24,33]. In the fol-
lowing section, we describe the data preprocessing and the
initial steps performed in accordancewith theKDDapproach
in Fig.1.

4.1 Initial study and data preprocessing

The initial dataset consisted of approximately 13 million
CDRs of telephone communications and text messages
generated by approximately 10,000 users (also interchange-
ably termed “objects” or “devices”) monitored over 20
months. Each data record represents a communication
event/interaction associated with a single user, regardless
of whether the user was the initiator (caller/sender) or the
receiver of the communication interaction. As a result of
operational constraints and the objective of balancing the
learned classes, the monitoring period was not uniformly
distributed over all the users. In fact, the dataset was biased
toward suspect users (e.g., it contained 6,175 suspects—a
proportion far beyond the ordinary proportions of sus-
pects in a population) obtained by using manual queries,
tagging and pre-sampling processes. Note that such a pro-
cedure requires adjusting the trained classifiers when they
are applied to datasets with non-balanced classes, either by
using a Bayesian approach with a proper a posteriori distri-
bution per class, as implemented here, or by applying other
adjustment procedures (e.g., see [1,16]). First, an ETL and
various aggregation processeswere executed according to the
KDD process shown in Fig. 1. Each monitored object in the
database was labeled either as “suspect” or as “non-suspect”
and associated with the main participating user in each CDR.
It should be noted that while suspect users were fully mon-
itored throughout the period, the dataset also contains users
who were not monitored and who appear only as the “other
party” communication partners of the monitored users. As
indicated above, theETL records containedonly themetadata
of the interactions; they included no information concerning
the communication content itself. Specifically, the metadata
consisted of a timestamp for the communication event, its
type (call or text), its duration or size (depending on its type)
and the ID codes for both the caller and the receiver. These
IDs were generated specifically for the study by performing
a one-time pseudonym mapping from the phone numbers to
create the list of IDs. Thus, in this study any details on the
names, identities or even the geographic associations that are
generally available for landline numbers were unavailable.
Note, however, that in a continuous implementation setting,
some sort of encryption mapping is probably needed, which
most often cannot mask the identity of the user given the
metadata features. For example, as shown by De Montjoye
et al. [13] only a few spatiotemporal points of data were suf-
ficient to uniquely identify most users. The preprocessing
stage also involved the implementation of data format stan-

dards and decomposition of the data fields to allow faster
query processing. Auxiliary dimensions and relevant indices
were defined and calculated to support the desired retrieval
patterns, including various time-based slices, communica-
tion events (call vs. text), group association of CDR parties,
listing of calendar events and an indication of the communi-
cation direction. This raw data processing allowed efficient
and convenient data slicing as well as fast statistical calcu-
lations over the large data volumes. At this stage, to create a
baseline, an initial classification study was carried out using
the raw CDR details. An initial TBNL classifier was trained
over the CDR features to indicate whether a tested CDR was
associated with a suspected object. The corresponding per-
formance at this initial stage achieved an average accuracy
of 71% with a recall level of 95%, but it resulted in an FPR
of over 50%, which did not meet the company requirements
of a maximum 1% FPR as discussed above. Next, a feature
engineering scheme (see Fig. 1) was implemented to extract
a relevant feature vector to be used as an input to the learning
algorithms. Various features were extracted and aggregated
to enrich the learning dataset. In this stage, a transformation
fromCDR-level records to user-level recordswas performed.
While the initial dataset contained a log of the detailed
communication events and their corresponding characteris-
tics, the aggregative dataset was associated with objects and
their characteristics over the monitoring period. The ultimate
objective was to obtain a user-descriptive dataset that would
support the identification of suspects by analyzing the behav-
ioral patterns of users. The initial feature vector consisted of
metadata features for each object such as the number of con-
tacts, average length of calls and the variance of contacts as
well as data slice communication features such as the number
of communications of each (call/text), the communication
direction (incoming/outgoing), tagged object groups (e.g.,
caller/recipient) and descriptive statistics for these features
(e.g., rate, average, standard deviation, minimum and max-
imum). Following the feature selection procedure described
below, each augmented communication record contained
approximately 30 discrete features. Discretization of con-
tinuous values followed the method proposed by Ching et al.
[10],which attempts tomaximize thenormalized information
score between the discretized feature and the class variable.
After the features were defined, various time slices and aug-
mentations were calculated for each feature over the CDR
values. For example, interactions over any single day were
divided into four quarters (after midnight, morning, after-
noon and night) and the following augmented measures were
calculated for each quarter of the day: the average number
of incoming (or outgoing) calls, the variance in the num-
ber of incoming/outgoing text messages and so on. Some of
these measures were defined in advance by company domain
experts—for example, the requirement to separate weekdays
andweekend days that are known to have different usage pat-
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terns. Other measures and aggregations were found through
experimentation based on the obtained classification results.
For example, a weekly aggregation was found to yield better
anomaly detection results, as described in the next section.
Corresponding to the third stage of theKDDprocess shown in
Fig. 1, pairwisemutual information (MI) and correlation tests
were conducted between pairs of features. Features that were
not correlated with the class variable or that were correlated
to the class variable but were found to be redundant were
removed from the dataset. This stage was repeated several
times until the number of features stabilized. To neutralize
the “seasonality” effects caused by the different monitoring
periods and, in particular, the difference in the number of
objects among different period durations, the feature values
were normalized with respect to the monitoring time. For
example, rather than measuring the total number of interac-
tions in amonitoring period, the rate of interactionswas taken
into account. Although the dimension space of the various
features increases exponentially with the number of charac-
teristics and the quantity of statistical measures, the TBNL
model was then used to select the most informative features.
It used a features selection scheme by which information
redundancy was measured and only features with high infor-
mation gain on the class variable were selected. This scheme
can result in a model that contains a relatively small num-
ber of features (as seen in Fig. 3) while controlling model
complexity and maintaining a desired accuracy level. Each
of the following subsections 4.2–4.5 corresponds to the final
TBNL stage of the KDD process shown Fig. 1. In particular,
each subsection briefly addresses one of the analytical tasks
described in Sect. 1. For each task, a specific class variable
and a set of features are defined and learned by a task-specific
TBNLmodel. Due to space limitations, we provide only brief
descriptions on some of these tasks.

4.2 Per-user anomaly detection

For this task, the objective was to construct a TBNL model
to detect user anomalies. The target variable was defined
to represent a deviation from the “normal” behavior of a
user, aggregated over a given time period. Several different
time periods were evaluated. Ultimately, a weekly period
was found to yield the best modeling results. In particular, a
month-aggregated dataset proved too small; it yielded biased
models that underperformed in the testing phase. Similarly,
a day-aggregated dataset was sparse: the aggregated values
for many days for most users were too dull due to little daily
activity. The week-aggregated dataset represents an overall
usage behavior for a specific week. Note that the data were
aggregated separately for suspect and non-suspect users, to
enable a detailed and specific examination of these groups
with respect to their normal/abnormal behavioral patterns.
By learning a TBNL model based on these data features, it

Fig. 2 Statistics on the week-aggregated dataset

is possible to identify behavioral patterns on a weekly basis,
fromwhich anomalies can be detected. A dynamic likelihood
threshold was specified to control the true positive/true nega-
tive rates. Per-user anomaly detection results were presented
to security domain experts and found to be very accurate and
valuable based on subjective judgments regarding anoma-
lous per-user behavior. Following this aggregation, another
ETL preprocessing step was conducted to remove outlier and
anomalous records such as augmentations that resulted in
smaller than expected values. Figure 2 shows a description
of theweek-aggregated anomaly dataset obtained by this pro-
cess.

4.3 Relevance of detected anomalies

For this task, the operational requirement was to distinguish
between “relevant” versus “irrelevant” anomalies. An exam-
ple of an irrelevant anomaly could be a sharp increase in
the number of text messages a user sends when a substantial
number of users simultaneously exhibit a similar behavioral
pattern. This situation may occur, for example, during hol-
idays, sport events or general emergency situations (e.g., a
large storm in a certain area), all of which can cause many
users to increase their text messaging interactions over a
short time period, thus increasing their text-to-call ratio dra-
matically. A trained classifier would detect an anomaly for
each of these users in that period, although, in fact, this
pattern of behavior is not an anomaly during that particu-
lar time window. To avoid mass reporting of anomalies by
the classifier in such cases, this task requires filtering out
those seemingly irrelevant events and retaining only the rel-
evant events. To address such scenarios, theTBNLmodelwas
augmented by a week index variable to determine whether a
detected anomaly was shared by other users during a given
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(indexed) week. Again, a weekly augmentation was found to
yield better anomaly detection results with respect to other
time period augmentations, as discussed above. Specifically,
the TBNL model was trained with a new week index vari-
able such that the probability parameters of the class variable
could be conditioned on this week index variable. As a result,
the TBNL classifier could represent two states: one for a
global anomaly detection with respect to the entire period
(unconditioned on the week index) and a second state for
anomaly detection at that slice-specific week. At the test-
ing phase, both model states were used to identify whether
an observed record was, respectively, globally anomalous
(termed a “global anomaly”) and/or specifically anomalous
for that week (termed a “slice-specific anomaly”). Table 1
summarizes the definition of “relevant” and “irrelevant”
anomalies under the different scenarios. The abovemen-
tioned example of a high text-to-call ratio during holidays
is represented by the third case in the table, where a global
anomaly is considered irrelevant due to specific behavior dur-
ing that week. Table 2 shows some cases classified by the
logic rules described in Table 1. For example, observations
5 and 6 are interpreted as “irrelevant” anomalies according
to Table 1.

Note that a similar slice-specific approach can be imple-
mented using other variables (not necessarily related to time
periods) such as age group, geographic location, education
level, weekend or holiday flags and so on. The proposed

Table 1 Truth table of global anomaly and slice-specific anomaly inter-
pretation

Global anomaly Slice-specific anomaly Interpretation

No No Normal

No Yes Noise

Yes No Irrelevant

Yes Yes Relevant

Fig. 3 An augmented TBNL network used for week-based anomaly
detection. The tailored model is used to indicate the relevance of the
detected anomalies to the classification task

implementation is in fact agnostic to the time period used as
well as to the aggregation type; thus, the slice-specific feature
can be adjusted by the requirements of domain experts.

The considered augmented model can be conveniently
constructed by using the TBNL model while adding a slic-
ing node as a parent node to the class variable. As indicated
above, in the current task, aweek-slice index variable ranging
from 1 to 52 was selected as the parent of the class vari-
able. All the rest of the network was constructed according
to the proposed TBNL method (see the Appendix) to enable
a direct comparison based on aggregated weekly slices. Fig-
ure 3 shows the augmented BN structure obtained at this
stage.

4.4 Association of anonymous devices to existing users

In this task, the objective was to associate anonymous phone
numbers with already known users. Such a scenario can hap-
pen, for example, when a suspect is using an anonymous
pay card or a prepaid SIM in another cellular device. The
association was obtained by using the TBNL to classify a

Table 2 Tested instances for
determining whether an instance
is relevant, intelligence-wise

ID No. of text
messages

No. of
calls

Text/calls
ratio

Day Global
anomaly

Slice-specific
anomaly

Relevant
anomaly

1 65 75 0.87 0.44 0 0 0

2 81 46 1.76 0.86 0 1 0

3 52 75 0.69 0.46 0 0 0

4 35 24 1.46 0.97 0 1 0

5 41 40 1.03 0.51 1 0 0

6 82 43 1.91 0.31 1 0 0

7 48 89 0.54 0.91 1 1 1

8 1 11 0.09 0.88 0 1 0

9 4 9 0.44 0.37 0 0 0

10 11 17 0.65 0.54 1 1 1
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Table 3 Confusion matrix of
new-to-existing device
associations. The rows and
columns represent the observed
and classified objects,
respectively. Entries in the table
represent the number of
classifications of a new device in
the corresponding column,
where the true label of the
device is given by the
corresponding row

A B C D E F G H I J K L M N O P Q

A 21 9 9 0 2 0 0 0 0 1 4 2 0 1 0 6 0

B 9 16 9 1 1 1 0 0 1 0 2 4 0 5 0 6 3

C 4 4 31 2 9 5 0 1 3 1 14 0 0 0 0 2 0

D 0 1 0 55 0 0 0 0 0 0 1 0 0 0 0 0 7

E 4 3 7 0 25 2 0 0 0 0 20 1 0 1 0 3 0

F 2 3 2 1 0 53 1 0 12 0 0 1 0 1 0 1 0

G 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0

H 1 0 0 1 1 1 0 74 0 0 0 5 0 4 0 0 0

I 0 0 0 0 0 16 0 0 94 1 0 0 0 0 0 0 5

J 0 0 0 0 1 0 0 0 0 85 0 0 0 0 0 0 0

K 5 3 5 0 12 0 0 0 0 0 41 0 0 0 0 1 0

L 1 7 0 0 1 1 0 0 0 0 4 38 0 11 0 3 0

M 1 0 1 6 0 0 1 0 0 1 0 0 68 0 0 1 0

N 0 5 1 0 0 0 1 0 1 0 1 8 0 38 0 1 1

O 0 0 0 0 0 0 0 0 0 2 0 0 0 1 49 0 0

P 1 3 1 0 0 2 0 0 1 0 2 3 0 0 0 37 0

Q 0 0 0 3 0 0 0 0 5 1 0 0 0 2 0 0 93

small set of unknown devices to the most similar device
from a given set of existing (known) devices. Specifically,
the TBNL classifier learned the behavioral patterns of each
of the existing devices. The behavioral pattern was derived
by predetermined aggregations resulting in a characteristic
feature vector for each known device. In the testing phase, the
CDRs of new (unknown) devices were aggregated, resulting
in a corresponding usage feature vector for each new device.
The TBNL was then used to classify the unknown device, to
one of the existing learned devices, by pattern-matching like-
lihood scoring. A match score was computed for each pair of
feature vectors between the unknown device and the exist-
ing devices. The evaluation was performed using a 10-fold
cross-validation procedure (i.e., splitting the data randomly
into to ten equal-size partitions and using each partition in
turn as a test set for the model that was trained over the rest
of the partitions). Seventeen users were considered, marked
by the letters A–Q. For evaluation purposes, the class label
of each (new) device in the test set was hidden, and a con-
fusion matrix was then calculated according to the TBNL’s
classifications versus the actual classes.

Table 3 shows the confusion matrix resulting from the
associations of an apparently unknown device to an existing
device based on the TBNL classifications. Each column in
the matrix represents the classification results, and each row
represents the actual (hidden) class of the tested device. A
correct association was achieved when a device was classi-
fied correctly to the actual class label. The diagonal entries
in the confusion matrix represent all the correct associations
of devices in this study. The ratio of the sum of the diago-
nal entries to the sum of all the entries in the matrix yields

an accuracy level of 71.8%. This result could be primarily
benchmarked to a random classification of seventeen poten-
tial classes, in which one would expect an accuracy level of
less than 6%. Thus, the TBNL evaluation in this limited study
shows an improvement of approximately 1200% that a new
unknown device will be correctly matched to its correspond-
ing devices using the pattern matching score derived by the
TBNL classifier.

4.5 Classification of suspect users

In this stage, after preprocessing the dataset, identifying user-
based relevant anomalies, and associating unknown users to
known users, the main classification task was executed. The
parameters of the TBNL were defined by a cross-validation
procedure such that they yielded the desired ratio between the
model’s accuracy and its FPR versus themodel’s complexity.
The default parameter values resulted in several classification
TBNLmodels; one is shown in Fig. 4. The figure emphasizes
again the importance of a graphical model, particularly for
the TBNL in such a use case: the figure provides an intuitive
understanding of the main factors, interactions and patterns
that can be used to identify suspects by distinctive rules. For
example, one can see that theminimumduration of an outcall
(denoted by “min_call_duration_OUT”) is influenced by the
percentage of interactions during the after midnight hours
(denoted by “Inter_prc_q1”), while the maximum call dura-
tion (denoted by “max_call_duration”) is influenced by the
percentage of interactions during themorning hours (denoted
by “Inter_prc_q2”). These patterns can be used by security
domain experts to provide intuitive communication profiles
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Fig. 4 A TBNL graph for suspect identification

Fig. 5 A Naïve Bayes graph obtained using TBNL-selected features

to distinguish between suspects and non-suspects. Moreover,
note that the TBNL graphical model is more informative
than other graphical models such as the popular Naïve Bayes
model shown in Fig. 5 (or the TAN model), in which all the
features simply appear as child nodes of the class variable.

The process of investigating the TBNL models over the
cross-validation process is combined with a forward feature
selection procedure, which relies on the total information
gain in each feature with respect to the class variable.
The graphical output of the TBNL for a given accuracy–
complexity trade-off such as the one presented in Fig. 4
enables a domain expert to better define the potential inter-
actions among the features and include them in the classifi-
cation model—either the TBNL itself or for use by another
classifier that relies on the TBNL feature selection (for exam-
ple, by including the relevant features and interaction terms
in the exponent of a logistic regression model, and denoting
this model by ‘LR (TBNL based FS)’). After the features
and their potential interactions have been exposed in the
TBNL graph, domain experts can use it to find interesting

Table 4 Most influential features according to the TBNL model

Variable (feature) Information
gain (%)

Average call duration with suspects 38.49

Maximum call duration 29.26

Text-to-call ratio in the 2nd day-quarter 4.48

Average call duration 2.74

Percentage of contacts in the 3rd day-quarter 1.90

Minimum duration of a call out 1.32

Percentage of contacts in the 4th day-quarter 1.10

Percentage of contacts in the 1st day-quarter 1.05

Maximum duration of an incoming call 1.04

Standard deviation duration of an incoming call 0.75

Fig. 6 Text-to-call ratio over 24h for both suspects (labeled by “1”)
and non-suspects (labeled by “0”). Note the difference between the two
populations during the late morning hours

and significant patterns in the data. For example, the inter-
action between ‘maximum call duration’ to the ‘percentage
of interactions during the morning hours’ leads the secu-
rity experts to measure the ‘text-to-call ratio’ in the second
day-quarter, which was found to provide important informa-
tion on suspects’ behavior. Moreover, note that by increasing
the information-theoretic threshold parameter of the TBNL
method, the number of edges between the features grows,
revealing more relevant interactions, up to a level that satis-
fies the required accuracy and provides an explanatory and
intuitive description for the security experts. Table 4 shows
the most influential features and interactions in terms of their
mutual information scores about the class variable.

One example of a pattern that was exposed by the TBNL
feature selection is shown in Fig. 6, which depicts the text-
to-call ratio over 24 hours for both suspects (labeled by “1”)
and non-suspects (labeled by “0”). This pattern was exposed
by the high information gain percentage of 4.48% for the
“Text-to-call ratio in the 2nd day-quarter” feature, as shown
in Table 4. This is the third important feature found by the
TBNL model, right after the average call duration with other
suspects’ feature (which had an information gain percentage
of 38.49%) and the “maximum call duration” feature (which
had an information gain percentage of 29.26%). These two
leading variables represent behavioral patterns of relatively
short calls for the suspects’ population. An intuitive analysis
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Fig. 7 A suspect detection ROC curve: Recall versus FPR

of Fig. 4 and Table 4 leads to the hypothesis made by the
security expert that non-suspect (conventional) users com-
municate verbally (speak) more during the morning hours
when they commute (drive) to work, while suspect users—
who do not necessarily work on regular hours (and often use
more than one phone: one for personal calls and the other
for criminal activities)—continue to interact through texting
during those hours. The expert’s hypothesis was verified by
drawing the proposed feature, “text-to-call ratio,” of suspect
users versus non-suspect users over the day. Figure 6 reflects
the inherent differences between the behavioral patterns of
the two populations. Clearly, these patterns are similar most
of the time, despite a very noticeable difference in the 2nd
day-quarter (especially from 9 am to 11 am) between the
two populations. These behavioral patterns of relatively short
calls of suspects emphasize that the TBNL can be used as a
descriptive quantitative model to extract patterns and reveal
insights for suspect identification by domain experts.

Finally, the proposed TBNL is compared to popular state-
of-the-art classifiers. Figure 7 shows the ROC curves of
three graphical models: the TBNL, the TAN and the Naïve
Bayes classifiers. In addition to these graphical models, it
also benchmarks the ROC curves of two non-graphical cor-
nerstone classifiers: the SVM and the logistic regression
(LR) classifiers. All the compared classifiers are analyzed
in two configurations. The first configuration consists of
a conventional implementation of each classifier using the
straightforward procedures available in R. The second con-
figuration is an implementation of these classifiers following
the TBNL’s feature selection procedure as described above.
The second configuration is denoted in the figure as (“TBNL-
based FS”). The vertical axis in Fig. 7 describes the detection
rate (Recall), while the horizontal axis describes the FPR—
both based on a fivefold cross-validation procedure.Note that
the horizontal axis is magnified to represent the “required
classification area” with a false positive rate less than 1%
and a recall of over 50%. The only two classifiers that met
the company requirement were the TBNL itself (denoted by
“TBNL”) and the logistic regression model whose exponent

was based on the TBNL feature selection procedure (denoted
by “LR (TBNL-based FS)”), which provides the best classifi-
cation result. Namely, in this model the TBNL is used to find
and engineer the features and their relevant interactions (as
detailed above) and these features and interactions are then
applied to the exponent of the Logit function to bettermap the
result to a [0–1] probabilistic measure by using the revised
LR model. None of the other classifiers meet the indus-
trial requirement. Sorted by their performance in descending
order they are: TANbased on theTBNL feature selection pro-
cedure, denoted by “TAN (TBNL-based FS)”; Naïve Bayes
based on the TBNL feature selection procedure, denoted by
“Naïve (TBNL-based FS)”; TAN, denoted by “TAN”; SVM
based on the TBNL feature selection procedure, denoted by
“SVM (TBNL-based FS)”; and SVM, denoted by “SVM”;
and the linear regression classifier, denoted by “LR.” The
lower line in the figure represents a baseline of 45◦, which
is equally balanced between the recall and the FPR. Note
that the TBNL outperformed the TAN, the Naïve Bayes,
the SVM and the logistic regression (LR) classifiers when
using the set of all available features. The performance of
all these classifiers improved when they followed the TBNL
feature selection procedure, which is based on a complexity–
accuracy trade-off and a graphical interface to select the final
set of features and interactions. The LR TBNL-based FS
model then obtained the best classification results by far—
dominating all the other tested classifiers. Both the TAN and
the Naïve Bayes classifiers detected at least 3705 of the 6175
suspects, along with approximately 80 out of 4210 users that
were falsely classified as suspects. In comparison, the TBNL
classifier obtained a recall value of 60% with an FPR of less
than 1%.TheTANclassifier obtains a similar recall value, but
with a 2% FPR. The Naïve Bayes classifier’s performance is
even worse. Figures 4 and 5 above show the corresponding
graphs of the TBNL and the Naïve Bayes models, respec-
tively.

5 Conclusions

The results obtained by the considered use case show that
the TBNL method obtained a 50% recall with a false pos-
itive rate of no more than 1%. Note that these results were
obtained without accessing the contents of the CDRs; only
their metadata were used and analyzed to characterize users’
behavioral patterns. The added value of the TBNL lies in its
capability to efficiently manage the trade-off between model
complexity and accuracy as well as in its ability to provide an
informative graphical interface that allows security domain
experts to investigate and find the behavioral patterns that can
distinguish suspect from non-suspect users. Regarding this
particular use case, the most influential characteristics for
the classification task were found to be the durations of the
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CDRs and their derivatives in various crossovers, such as the
average call duration with other suspects and the distribution
of calls and text messages throughout the four quarters of the
day. We used primary statistical metrics; however, we do not
claim that the feature engineering task was optimal, and we
leave this discussion for future research. The applied algo-
rithm considers such new features during the BN learning
stage while providing an intuitive presentation that subject
matter experts can grasp easily.
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Appendix: the TBNL algorithm

The TBNL algorithm (for more details see [18]) uses a
recursive procedure that can be applied to anynode that repre-
sents a variable. The procedure, calledAddParents (described
below) adds edges from candidate nodes to the node to which
the procedure is currently applied: each time, it adds the
edge from the node with the highest Information Gain (IG)
value. Essentially, AddParents is a greedy, forward feature
selection procedure, which is similar to the feature selection
scheme used by the adding-arrows principle [34]. The main
difference is that the TBNL algorithm starts with the class
variable and then proceeds recursively to the selected parent
nodes. In particular, the TBNL algorithm starts by applying
the AddParents procedure to the target node to select its par-
ents. Then, AddParents is applied to each parent sequentially
to select its own parents from the set of the target node’s
parents. Thus, any node in the network can be a parent of
the target node (i.e., corresponding to a limited form of a
Markov blanket) while still maintaining the DAG structure.
The input parameters of the AddParents procedure are as fol-
lows: Xi represents the current node; Ti represents the set of
the candidate parents of Xi ; C represents the set of arbitrary
constraints on the network such as the number of permit-
ted parameters; ηi represents a constraint of the maximum
allowed MI concerning Xi ; and βi represents the minimum
IG “step size” when adding a parent to Xi in the network.
After applying the AddParents procedure to node Xi , the
output is the set of parent nodes Zi if one of the following
conditions is fulfilled: 1) any of the C constraints is not met;
2) I

(
Xi ;Zi |Zi

)
/H (Xi ) < βi ; or 3) the set of candidate par-

ents Ti is empty. The AddParents procedure is shown next.
The last twocode lines imply that it is a quasi-recursive proce-
dure; namely, the TBNL algorithm actually calls AddParents
only once. Then, having obtained Zi , it iteratively calls
Z j = AddParents

(
X j ,Zi ,C, η j , β j

)
for each X j∈Zi . Note

that the order of the iterations is well defined: the output par-
ents from each iteration directly affect the input of the next
step. Such a procedure generates different outputs than those
that would have been obtained had the algorithm iterated the
procedure only after obtaining the full set of parents. Thus,
the TBNL calls Zt = AddParents

(
Xt ,Xt ,C, ηt , βt

)
, which

ultimately results in a DAG G = {Z1,Z2, . . . ,ZN }.

Input:
G: a DAG; Xi : the current node; Ti : the set of candi-
date parents of Xi ; C: a set of constraints on the BN;
ηi : maximum MI about Xi ; βi : minimum IG about
Xi given Zi

Output:
Zi : the set of parents of Xi

Procedure:
Set Zi = {∅}; Set T′

i = Ti

Stop=FALSE
While T′

i �= {∅}AND NOT (Stop)
——–X j = argmax j ′:X j ′ ∈T′

i
{

I
(
Xi ; X j ′ |Zi

)
/H (Xi ) }

——–Add an arrow E ji = Vj —> Vi in G
——–If C is not met
————-Stop=TRUE
——–If I (Xi ;Zi ∪ {Xi }) ≥ ηi
————-Stop=TRUE
——–If I

(
Xi ; X j |Zi

)
/H (Xi ) < βi

————-Stop=TRUE
——–If Stop
————-Remove E ji

——–Else
————-Zi = Zi ∪ {Xi }
————-T′

i = T′
i \ {X j }

End {While}
For each Xk∈Zi

——–Zk = AddParents (G, Xk,Zi ,C, ηk, βk)

Return Zi
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