دانلود رایگان مقاله مدل سازی تولید برق برای ماشین های برداشت انرژی ترموالکتریک پوشیدنی

عنوان فارسی
مدل سازی تولید برق برای ماشین های برداشت انرژی ترموالکتریک پوشیدنی با محدودیت های عملی
عنوان انگلیسی
Power generation modeling for a wearable thermoelectric energy harvester with practical limitations
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E243
رشته های مرتبط با این مقاله
مهندسی مکانیک و مهندسی برق
گرایش های مرتبط با این مقاله
انتقال و توزیع، تبدیل انرژی و برق قدرت
مجله
انرژی کاربری
دانشگاه
دانشکده مهندسی مکانیک، دانشگاه سانتا کلارا، ایالات متحده آمریکا
کلمات کلیدی
ترقی دادن تبدیل کننده، نظر عملی، هندسه ماژول، بهینه سازی نزول گرما، تطبیق بار حرارتی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Recent studies on improving the thermoelectric figure of merit (ZT) have advanced research into self-powered, wearable technologies using thermoelectric generators. However, previous design approaches do not consider structurally practical heat sink and module geometries, the use of a boost converter, or the size constraint of the generator due to aesthetic appeal, all of which lower the overall power output. Additionally, the reduced efficiency in using a boost converter changes the electrical and thermal load matching conditions for maximum power. In this study, the limitations of practicality were considered for a wearable thermoelectric generator that utilizes a state-of-the-art boost converter and an optimized heat sink. Heat sink fin geometries and thermoelectric module geometries were explored to maximize the power output within a 42.0 cm2 area and a 1.0 cm total height, in order to justify the wearability of the energy harvester. With optimized values of fin and module heights, the system was designed to produce 0.48 mW of electrical power at a boosted output voltage of 3.0 V, enough to power a small heart-rate monitor.

نتیجه گیری

4. Conclusions


In designing an effective wearable thermoelectric generator, three practical issues of system integration must be considered: the limited heat dissipation from the cold side of the module, the low voltage reality of thermoelectric devices, and the overall size of the wearable device. Since a boost converter was used to increase the output voltage of the system, neither the traditional method nor the thermal load matching method could be used to optimize the generator. Furthermore, it was found that with the current materials and boost converters, practicality in design disallowed the optimum B-factor from being used, prohibiting the system from performing at its full potential and gaining its maximum power output. In designing the heat sink for the generator, the fin height was the dominating factor for reducing the generator’s cold size thermal resistance and providing the greatest output power. After optimizing a heat sink for natural convection and the module geometry within the practical constraints, a potential output of 0.48 mW at 3.0 V produced purely by body heat was calculated with the consideration of a boost converter for a thermoelectric generator with a total area of 42 cm2 and a total thickness of 1.0 cm. Due to its high output voltage, the thermoelectric generator was determined to be capable of powering small electrical devices. With known theoretical values, this paper calls for an experimental effort to build a prototype of a single link to provide experimental validation for the modeling results.


بدون دیدگاه