منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله مدل درختی گروه برای شناسایی سیستم تحمل صدا

دانلود رایگان مقاله مدل درختی گروه برای شناسایی سیستم تحمل صدا
قیمت خرید این محصول
رایگان
سفارش ترجمه این مقاله
عنوان فارسی
مدل درختی گروه برای شناسایی سیستم تحمل صدا
عنوان انگلیسی
Model-Tree Ensembles for noise-tolerant system identification
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
15
سال انتشار
2014
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E88
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
مهندسی نرم افزار
مجله
مهندسی انفورماتیک پیشرفته
دانشگاه
گروه فن آوری دانش، موسسه جوزف استفان، لیوبلیانا، اسلوونی
کلمات کلیدی
گروه درخت تصمیم گیری، درخت مدل فازی، شناسایی سیستم غیر خطی پویا
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This paper addresses the task of identification of nonlinear dynamic systems from measured data. The discrete-time variant of this task is commonly reformulated as a regression problem. As tree ensembles have proven to be a successful predictive modeling approach, we investigate the use of tree ensembles for solving the regression problem. While different variants of tree ensembles have been proposed and used, they are mostly limited to using regression trees as base models. We introduce ensembles of fuzzified model trees with split attribute randomization and evaluate them for nonlinear dynamic system identification. Models of dynamic systems which are built for control purposes are usually evaluated by a more stringent evaluation procedure using the output, i.e., simulation error. Taking this into account, we perform ensemble pruning to optimize the output error of the tree ensemble models. The proposed Model-Tree Ensemble method is empirically evaluated by using input–output data disturbed by noise. It is compared to representative state-of-the-art approaches, on one synthetic dataset with artificially introduced noise and one real-world noisy data set. The evaluation shows that the method is suitable for modeling dynamic systems and produces models with comparable output error performance to the other approaches. Also, the method is resilient to noise, as its performance does not deteriorate even when up to 20% of noise is added.

نتیجه گیری

4. Conclusions, discussion, and further work


4.1. Summary We address the task of discrete-time modeling of nonlinear dynamic systems using measured data, which is typically converted into a regression problem. We investigate the use of tree ensembles for regression, a very successful predictive modeling approach, for this task. We consider existing tree ensemble approaches to regression, such as bagging of model trees, and propose the use of a novel approach of learning model tree ensembles tailored to the task of modeling dynamic systems. The latter learns random forests of fuzzified model trees and performs ensemble selection based on the output error measure. We evaluate the performance of the tree ensemble methods and three state-of-the-art methods for system identification typically used in control engineering. We consider the predictive performance of the learned models and in particular their resilience to noise. For this purpose, we use one synthetic task without noise, one synthetic task with different levels of artificially introduced noise, and one real task of modeling nonlinear dynamic systems, all coming from the area of control engineering.


بدون دیدگاه