ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Load forecasting plays a dominant part in the economic optimization and secure operation of electric power systems. The plans of the electric power sector have been done and developed with the aid of statistical prediction methods. Electric utiiity companies need monthly peak and yearly load forecasting for budget planning, maintenance scheduling and fuel management. This paper presents a new approach based on a hybrid fuzzy neural technique which combines artificial neural network and fuzzy logic modeling for long term industrial load forecasting in electrical power systems, An extensive study is carried out to find the accurate forecasting model through an application on an industrial IO th of Ramadan city in Egypt. Actual record data is used to test the proposed method. A large number of influencing factors have been examined and tested. This paper presents a fully developed system for the prediction of electric maximum demand and consumption for the future 24 months. Also very long-term load forecasting was carried. The strength of this technique lies in its ability to reduce appreciable computational time and its comparable accuracy with other modeling techniques. The outcomes of the study clearly indicate that the proposed composite model of neural network technique and fuzzy inference method can be used as attractive and effective means for the industrial monthly and yearly peak load forecasting. The test results showed very accurate forecasting with the average percentage relative error of 1.98 %.