دانلود رایگان مقاله انگلیسی یکپارچه سازی توزیع محتوا مبتنی بر خوشه بندی LTE و IEEE 802.11p با منطق فازی و Q-learning - نشریه IEEE 2018

عنوان فارسی
یکپارچه سازی توزیع محتوا مبتنی بر خوشه بندی LTE و IEEE 802.11p با منطق فازی و Q-learning
عنوان انگلیسی
Cluster-Based Content Distribution Integrating LTE and IEEE 802.11p with Fuzzy Logic and Q-Learning
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2018
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
کد محصول
E6180
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
هوش مصنوعی
مجله
مجله هوش محاسباتی - IEEE Computational Intelligence Magazine
دانشگاه
Graduate School of Informatics and Engineering - The University of Electro-Communications - Tokyo - Japan
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


There is an increasing demand for distributing a large amount of content to vehicles on the road. However, the cellular network is not sufficient due to its limited bandwidth in a dense vehicle environment. In recent years, vehicular ad hoc networks (VANETs) have been attracting great interests for improving communications between vehicles using infrastructure-less wireless technologies. In this paper, we discuss integrating LTE (Long Term Evolution) with IEEE 802.11p for the content distribution in VANETs. We propose a twolevel clustering approach where cluster head nodes in the first level try to reduce the MAC layer contentions for vehicle-tovehicle (V2V) communications, and cluster head nodes in the second level are responsible for providing a gateway functionality between V2V and LTE. A fuzzy logic-based algorithm is employed in the first-level clustering, and a Q-learning algorithm is used in the second-level clustering to tune the number of gateway nodes. We conduct extensive simulations to evaluate the performance of the proposed protocol under various network conditions. Simulation results show that the proposed protocol can achieve 23% throughput improvement in highdensity scenarios compared to the existing approaches.

نتیجه گیری

V. Conclusions


We have proposed a novel protocol for content distribution in hybrid LTE and IEEE 802.11p vehicular networks. The protocol employs a two-level clustering approach where the first-level clustering is used to solve the MAC layer contention problem of IEEE 802.11p-based V2V communications in a high-density vehicular environment, and the second-level clustering is responsible for selecting gateway nodes which bridge V2V and LTE. We used a fuzzy logic algorithm in the first-level clustering to generate a stable cluster head nodes by taking into account vehicle velocity, vehicle distribution and link quality between vehicles. We further employed a Q-learning algorithm in the second-level clustering to tune the number of gateway nodes in order to achieve high overall network performance under various network conditions. Through computer simulations, we have confirmed that the proposed protocol can provide a better performance than the existing baselines in various scenarios, achieving 23% throughput improvement in high-density scenarios.


بدون دیدگاه