دانلود رایگان مقاله بوت استرپ و PLS-SEM در راهنمای دریافت نتایج بوت استرپ

عنوان فارسی
بوت استرپ و PLS-SEM: راهنمای گام به گام برای دریافت بیشتر از نتایج بوت استرپ
عنوان انگلیسی
Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
15
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E3243
رشته های مرتبط با این مقاله
مدیریت و علوم اقتصادی
گرایش های مرتبط با این مقاله
مدیریت کسب و کار، مدیریت استراتژیک
مجله
مجله اروپایی مدیریت و اقتصاد کسب و کار - European Journal of Management and Business Economics
دانشگاه
گروه بازاریابی و استراتژی در دانشگاه هاسلت بلژیک
کلمات کلیدی
PLS-SEM؛ بوت استرپ. (تعصب اصلاح) صدک فواصل اعتماد به نفس از بوت استرپ، استنباط آماری، آزمایش فرضیه، اثرات مستقیم،اثرات غیر مستقیم، مجموع اثرات، مقایسه اثرات، ضریب تعیین
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Statistical inference, which relies on bootstrapping in partial least squares structural equation modeling (PLS-SEM), lies at the heart of developing practically relevant and academically rigorous theory. Inspection of PLS-SEM applications in European management research reveals that there is still much to be gained in terms of bootstrapping. This paper suggests several bootstrapping best practices and demonstrates how to conduct them for frequently encountered, yet often ignored, PLS-SEM situations such as the assessment of (non) direct effects, the comparison of effects, and the evaluation of the coefficient of determination.

نتیجه گیری

4. Conclusion


According to Chia (2014), conducting relevant and rigorous European management research requires researchers “to imaginatively seek out ever-newer meanings to both exceptional and ordinary everyday experiences, familiar and unfamiliar happenings, and taken-for-granted conceptual formulations” (Chia, 2014, p. 686). PLS-SEM's exploratory characteristic perfectly fits this point of view and can therefore be considered a valuable data analytical approach for European management researchers. From a statistical explanatory modeling point of view, hypothesis testing is a critical element in developing relevant and rigorous theory (Shmueli & Koppius, 2011). In a PLS-SEM context, hypothesis testing relies on bootstrapping. As evidenced by the overview of PLS-SEM applications in European management research (see also Table 1), the accompanying bootstrap procedures are often suboptimal. In response to this observation, this paper provides a detailed overview of how to construct bias-correct percentile bootstrap confidence intervals and to demonstrate how these bootstrap confidence intervals can be used to test hypotheses related to frequently encountered research situations in management research. Although not directly related to a particular substantive European management research domain, this paper contributes to the European management research domain in the following ways. First, a key recommendation of our work is that in order to make better statistical inferences, which is one cornerstone of (European) management research (Cashen & Geiger, 2004; Thietart, 2001), constructing bias-corrected percentile bootstrap confidence intervals based on a large number of bootstrap samples (i.e., at least 10,000) offers a powerful approach to test a large variety of hypotheses. In terms of practical implementation, Table 3 presents a set of guidelines and minimal requirements for PLS-SEM bootstrap procedures that are relevant to researchers, editors, and reviewers alike.


بدون دیدگاه