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Statistical inference, which relies on bootstrapping in partial least squares structural equation modeling
(PLS-SEM), lies at the heart of developing practically relevant and academically rigorous theory. In-
spection of PLS-SEM applications in European management research reveals that there is still much to be
gained in terms of bootstrapping. This paper suggests several bootstrapping best practices and dem-
onstrates how to conduct them for frequently encountered, yet often ignored, PLS-SEM situations such as
the assessment of (non) direct effects, the comparison of effects, and the evaluation of the coefficient of
determination.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The European management research field is on the verge of a
revolution in terms of what is considered valuable scholarship
(Chia, 2014; Hernes, 2014). More than ever before, there is a strong
need and desire to return to European management scholarship's
roots of being interdisciplinary, practically relevant, and academi-
cally and methodologically rigorous (Hernes, 2014; Kaplan, 2014;
Kenworthy & Verbeke, 2015).

In this quest of what Chia (2014) refers to as a “scholarship of
common sense,” partial least squares structural equation modeling
(PLS-SEM) is a promising and relevant data analytical approach, as
it is particularly suitable for providing empirical support for
nascent theory; it is not impeded by a large number of stringent
and impractical assumptions, and it is prediction-oriented in nature
(Hair, Sarstedt, Pieper, & Ringle, 2012; Sarstedt, Ringle, Smith,
be (S. Streukens), sara.

, S., & Leroi-Werelds, S., Boots
urnal (2016), http://dx.doi.or
Reams, & Hair, 2014; Sosik, Kahai, & Piovoso, 2009).
The number of PLS-SEM applications in European management

research is increasing and the benefits of PLS-SEM are well
appreciated by many in the field thanks to some excellent over-
views such as that of Hair et al. (2012). Nevertheless, the topic of
statistical inference in PLS-SEM has received only limited attention
so far, thereby failing to use PLS-SEM to its fullest potential in its
contributions to the development of valuable European manage-
ment theory.

In a statistical explanatory modeling context, statistical
inference (i.e., hypothesis testing) occupies a pivotal place (cf.
Cashen & Geiger, 2004; Thietart, 2001). In line with its
distribution-free character, PLS-SEM relies on a bootstrap pro-
cedure to make statistical inferences. However, inspection of PLS-
SEM applications in the European management literature reveals
that only standard normal bootstrap confidence intervals are
typically constructed to test whether relationships between
adjacent constructs (i.e., direct relationships) are statistically
significant. This is unfortunate, as bootstrapping has so much
more to offer regarding the assessment of direct relationships
trapping and PLS-SEM: A step-by-step guide to get more out of your
g/10.1016/j.emj.2016.06.003
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and much more beyond this, such as testing the significance of
both non-direct effects and the coefficient of determination as
well as a formal comparison of effects.

The overall aim of this paper is to suggest (as well as empir-
ically illustrate) some of the bootstrapping best practices appli-
cable to commonly encountered European management research
situations in a PLS-SEM context. Given this aim, the remainder of
this paper is structured as follows. First, to identify key areas for
improvement regarding the use of bootstrap procedures, the
status quo of the bootstrap procedures used in PLS-SEM appli-
cations in European management research is described. Second,
building on the previous step, an overview of the relevant liter-
ature related to key bootstrap decisions is presented. Inspection
of this literature reveals that although much knowledge on
bootstrapping exists, especially in more technical domains such
as econometrics and psychometrics, it appears to be rather un-
known to the European management research community. As
such, the intent of this literature overview is therefore to provide
clear and concise recommendations for improved bootstrap
procedures in a PLS-SEM context relevant for European man-
agement researchers. Third, once again building on the obser-
vations regarding the PLS-SEM applications in European
management research as well as the bootstrapping literature
overview, a step-by-step guideline and a detailed empirical
demonstration of how to practically perform the suggested
bootstrap procedures in the PLS-SEM context are given. In
particular, the focus will be on assessing the statistical signifi-
cance of direct effects, non-direct effects, the coefficient of
determination, and the comparison of effects. Finally, the paper
concludes with a summary of several key recommendations for
more optimal bootstrap procedures by European management
researchers and a discussion of how the topics addressed in this
paper relate to predictive analytics in PLS-SEM, and it touches
upon this research's limitations.

2. Bootstrapping and PLS-SEM

This section starts with a brief introduction of the essence of
bootstrapping and its merits. After that, an overview summarizing
several bootstrap-related issues characterizing PLS-SEM applica-
tions in European management research is provided. This overview
will then serve as a basis for suggesting several bootstrapping best
practices in a PLS-SEM context.

2.1. Bootstrapping and its merits

In a nutshell, bootstrapping is a non-parametric resampling
procedure that assesses the variability of a statistic by examining
the variability of the sample data rather than using parametric
assumptions to assess the precision of the estimates (for a detailed
discussion of bootstrapping, see Efron and Tibshirani (1994)). In
general, J samples are created in order to obtain J estimates for each
parameter in the model. Typically, each of the J samples is obtained
by sampling with replacement from the original data in such a way
that every bootstrap sample contains as many cases as are present
in the original data.

According to Mooney and Duval (1993) and Wood (2005),
bootstrapping has several key advantages for applied researchers.
First, the method is transparent and requires little knowledge of
mathematics or probability theory. Second, the statistical as-
sumptions on which the method depends are rather non-
restrictive. This is particularly relevant for applied researchers
since empirical data often do not meet restrictive assumption such
as (multivariate) normality underlying many statistical models,
which in turn influences the ability to make valid statistical
Please cite this article in press as: Streukens, S., & Leroi-Werelds, S., Boots
bootstrap results, European Management Journal (2016), http://dx.doi.or
inferences from the data. Third, bootstrapping is widely applicable.
As such, bootstrapping offers a solution to situations where con-
ventional methods may be difficult or impossible to find. Related to
this last point, it is important to explicitly note that you can almost
bootstrap any number (in a PLS-SEM context).

The bootstrap procedures that take central stage in the cur-
rent research are the so-called non-parametric bootstrap pro-
cedures (referred to by Efron (1982) as the original bootstrap). In
addition, parametric bootstrap procedures exist (see, for
instance, Davison & Hinkley, 2003). In contrast to non-
parametric bootstrapping, which makes no assumptions about
the underlying population distribution, parametric bootstrapping
resamples a known distribution function (e.g., a normal distri-
bution) whose parameters are estimated from the sample (Amiri,
von Rosen, & Zwanzig, 2010).

The notion that parametric statistics are more powerful yet less
robust than non-parametric statistics (Gibbons & Chakraborti,
2011; Siegel & Castellan, 1988) also holds for the distinction be-
tween parametric and non-parametric bootstrapping. Yet para-
metric bootstrapping is not often used in real-life statistical
problems (Chernick, 1999). Following Davison and Hinkley (2003),
this observation can be extended to PLS-SEM, as making assump-
tions about some parametric underlying distribution is not
compatible with the distribution-free nature of PLS-SEM.

Although non-parametric bootstrapping does not rely on
distributional assumptions, and thus produces more robust results,
the bootstrap method will only provide a good approximation of
the population parameter of interest if the sample is a good
approximation of the population (Chernick, 1999). Put differently,
bootstrapping needs good data and is not some miracle cure for
dealing with bad data and/or (too) small samples. On the other
hand, it should be noted that if the data were biased, parametric
bootstrap procedures face the same problem and thus do not
provide any remedy.

2.2. Bootstrapping and PLS-SEM applications

Departing from the work of Hair et al. (2012), Table 1 provides
an overview of the bootstrap procedures reported for PLS-SEM
applications in the field of European management published in
key management journals.

Each of the PLS-SEM applications is described in terms of six
criteria covering two general dimensions. The first dimension
concerns the bootstrapping procedure employed in the PLS-SEM
application. Here, attention is paid to the following criteria: (1)
the type of bootstrap (or alternative resampling) procedure used;
(2) the number of bootstrap samples; and (3) the statistic used to
test the hypothesized (direct) effects. The second dimension
describes the PLS-SEM applications in terms of the type of effects
and/or parameters that could be formally assessed by means of a
bootstrap procedure but are not necessarily performed by the
researchers. Here distinctions are made among (1) direct effects
(also covered under the previous dimension), (2) non-direct ef-
fects, (3) relative impact of effects, and (4) structural model
performance in terms of the coefficient of determination of
endogenous constructs. Regarding the non-direct effects as well
as the relative effects, it should be noted that a possible reason
these effects are not formally assessed in the PLS-SEM applica-
tions listed in Table 1 may be that these effects do not fit the
scope of the particular study.

2.3. Observations on the applied bootstrap procedures

In terms of reporting, both surprising and shocking is the fact
that 41.7% of the applications listed in Table 1 refrain from reporting
trapping and PLS-SEM: A step-by-step guide to get more out of your
g/10.1016/j.emj.2016.06.003



Table 1
PLS-SEM applications in European management research.

Applied bootstrap procedure

Effects/parameters tested by bootstrap procedure

Direct effect Non-direct effect Comparison coefficients Coefficient of determination (R2)

Bootstrap? # Bootstrap
samples?

Significance? Present
in model?

Significance? Relevant
in model?

Significance? Reported? Significance?

Bauer and Matzler (2014) Not reported Not reported p-values “smaller than” Yes No Yes No Yes No
Becker, Klein and Wetzels (2012) Yes 1000 p-values Yes Yes, p-values

“smaller than”
Yes No Yes No

Berghman, Matthyssens, Streukens,
and Vandenbempt (2013)

Yes 5000 Percentile bootstrap CI Yes No Yes No Yes Yes, percentile bootstrap CI

Fink, Harms, and Kraus (2008) Yes 500 t-values Yes No Yes No Yes No
Fornell, Lorange, and Roos (1990) No, jackknife t-values Yes No, but

calculated
Yes No Yes No

Gruber, Heineman, Brettel, and Hungeling (2010) Not reported Not reported t-values Yes No Yes No Yes No
Jacob, Kleispass, and Pohl (2014) Not reported Not reported t-values Yes No Yes No Yes No
Landau and Bock (2013) Yes 500 Standard normal

bootstrap CI
Yes No Yes No Yes No

Macedo, Pinho, and Silva (2016) Yes 5,000 t-values Yes Yes Yes No Yes No
Money, Hillenbrand, Henseler, and Da Camara (2012) Yes 5,000 t-values Yes No Yes No Yes Yes, standard normal bootstrap CI
Nell and Ambos (2013) Yes 1,000 Standard normal

bootstrap CI
No No Yes No

Swoboda, Meierer, Forscht, and Morschett (2011) Not reported Not reported Standard normal
bootstrap CI

Yes No Yes No Yes No

Van Riel, Berens, and Dijkstra (2009) Not reported Not reported p-value “smaller
than”

Yes No Yes No Yes No

Notes.
PLS applications were selected using the search criteria suggested by Hair et al. (2012). Subsequently, only applications that were conducted in a European context were included.
“Not reported” means that the researchers did not report this information in their publication.
“p-values ‘smaller than’” refers to situations in which no exact p-values are reported, but where the researchers indicate by means of asterisks whether the p-value associated with a parameter was smaller than the significance
level (e.g., p < 0.05, p < 0.01).
To assess whether non-direct effects were present in the model, all research models were examined to see whether they contained indirect effects and whether the calculation of total effects would be feasible.
The comparison of coefficients is deemed feasible for models that contained endogenous constructs that are a function of at least two different predictors.
Publication details of the PLS-SEM applications can be found in the reference list, where they are indicated by means of an asterisk.
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details regarding their bootstrap strategy. This is undesirable as it
does not allow fellow researchers to judge the quality of the pro-
cedure on which the research findings are based.

In those cases where details regarding the employed bootstrap
procedure are provided, three observations are noteworthy. First of
all, symmetric bootstrap confidence intervals (or, equivalently, t-
values based on the bootstrap distribution) are mostly used to
evaluate model parameters (66.7%). Second, the number of boot-
strap replications varies tremendously (minimum ¼ 500;
maximum ¼ 5000). Third, although it concerns a relatively older
application, some researchers opt for a jackknife procedure rather
than bootstrapping. Related to these observations, the subsequent
sections intend to provide several guidelines to more optimally
conduct and report bootstrap procedures.
2.4. Evaluating statistical significance by means of bootstrapping

Based on the bootstrap output, various ways exist to assess the
stability of the model parameters. According to Wood (2005),
confidence intervals are preferred to p-values, as the former are less
liable to misinterpretation and provide information about the size
of the effect. Different possibilities exist when deciding to construct
bootstrap confidence intervals. The three most common ap-
proaches (i.e., standard normal, percentile, and bias-corrected
percentile bootstrap confidence intervals) that can be calculated
Table 2
The construction of bootstrap confidence intervals.

Standard normal bootstrap confidence interval Percentile bootstrap confidence

Conduct J bootstrap samples each with n cases (here n equals the size of the original s
Determine the mean value of the J estimates of

g (i.e., g) as well as the accompanying
standard deviation (i.e., SDg).

Determine the (a/2)th and the (1
percentile of the bootstrap distr
consisting of J estimates for para

The lower bound (i.e., LB) and upper bound (i.e.,
UB) of the standard normal bootstrap
confidence interval are given by equations
(1a) and (1b), respectively. In equations (1a)
and (1b), z(1�a/2) is the(1�a/2) critical value
of the standard normal distribution.

The lower bound (LB) and uppe
the percentile bootstrap confide
given by equations (2a) and (2b

LB ¼ g�
�
zð1�a=2Þ,SDg

�
(1a) LB ¼ ða=2Þ,100%

UB ¼ gþ
�
zð1�a=2Þ,SDg

�
(1b) UB ¼ ð1� a=2Þ,100%

Please cite this article in press as: Streukens, S., & Leroi-Werelds, S., Boots
bootstrap results, European Management Journal (2016), http://dx.doi.or
by hand using the original bootstrap output are listed in Table 2
together with their computational details.

The standard normal bootstrap confidence interval (as well as
the closely related t-value) still relies on certain parametric distri-
butional assumptions (i.e., z-distribution and t-distribution) and
implies a bootstrap confidence interval that is symmetrically
distributed around the mean. According to Efron and Tibshirani
(1986), the standard normal bootstrap confidence interval works
well with normal data. As previous studies (e.g., Hair, Ringle, &
Sarstedt, 2013; Shook, Ketchen, Hult, & Kacmar, 2004) on meth-
odological issues in management research have shown that the
assumption of normal data often is unrealistic, standard normal
bootstrap confidence intervals are likely to be suboptimal.

Unlike the standard normal bootstrap confidence interval, (bias-
corrected) percentile bootstrap confidence intervals may be
asymmetrically distributed around the mean parameter estimate.
This is a valuable property, as the forced symmetry of the standard
normal confidence intervals may have a negative influence on
estimation accuracy, type I errors, and statistical power (Efron &
Tibshirani, 1994). However, in small samples (especially with
asymmetric distributions), the regular percentile bootstrap confi-
dence interval does not work well (Chernick, 1999). In addition, a
notable drawback of the regular percentile bootstrap confidence
interval is the restrictive assumption that the bootstrapped sam-
pling distribution is an unbiased estimate of the sample
interval Bias-corrected percentile bootstrap confidence interval

ample) and save the J bootstrap estimates for parameter g
�a/2)th

ibution
meter g.

Determine Z
0
LB andZ

0
UB , defining the percentiles for the bias-

corrected bootstrap confidence interval using equations
(3a) and (3b), respectively.

r bound (UB) of
nce interval are
), respectively.

Z
0
LB ¼ Z0 þ ððZ0 þ ZLBÞ=ð1� baðZ0 þ ZLBÞÞÞ (3a)

Z
0
UB ¼ Z0 þ ððZ0 þ ZUBÞ=ð1� baðZ0 þ ZUBÞÞÞ (3b)

In equations (3a) and (3b), ZLB and ZUB are the standard
normal distribution's z-score associated with the
confidence interval's lower and bound percentile,
respectively, andZ0 is the z-score corresponding to the
percentage of the J bootstrap estimates that are smaller than
the original sample estimate. Finally, the term ba is the so-
called acceleration coefficient and is determined by
equation (3c).

(2a) ba ¼
Xn
i¼1

�
q� qi

�3,
6

"Xn
i¼1

�
q� qi

�2
#3=2

(3c)

(2b)
In equation (3c), qi is the ith bootstrap estimate and q is the
average value of the J bootstrap estimates.

Determine the proportion of the normal distribution to the
left of Z

0
LB and Z

0
UB , denoted by, respectively, pLB and pUB.

The lower bound (i.e., LB) and upper bound (i.e., UB) of the
bias-corrected percentile bootstrap confidence interval
correspond to the observations of the sorted distribution of
the J bootstrap estimates as implied by equations (3d) and
(3e).

LB ¼ ðpLB,JÞthobservation (3d)

UB ¼ ðpUB,JÞthobservation (3e)

trapping and PLS-SEM: A step-by-step guide to get more out of your
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distribution (Mooney & Duval, 1993).
In response to the drawbacks mentioned above, Efron (1982)

proposed the biased-corrected and accelerated percentile boot-
strap confidence interval,1 which adjusts for bias due to non-
symmetric distribution and the shape (i.e., skewness) of the dis-
tribution Several simulation studies, such as MacKinnon,
Lockwood, and Williams (2004) and Williams and MacKinnon
(2008), have been conducted to assess the relative performance
of the three bootstrap confidence interval approaches discussed
above and presented in Table 2. These studies show that (bias-
corrected) percentile bootstrap confidence intervals are indeed
superior to standard normal bootstrap confidence intervals in
terms of power, accuracy, and type I error rate. The superiority of
the bias-corrected percentile bootstrap confidence interval over the
regular percentile bootstrap confidence interval is less straightfor-
ward. The bias-corrected percentile confidence interval possesses
greater power, although the percentile bootstrap had better control
of type I error (MacKinnon et al., 2004). Nevertheless, based on a
simulation study involving complex structural models, Williams
and MacKinnon (2008) concluded that the bias-corrected percen-
tile bootstrap is the method of choice. Hence, it is recommended to
construct bias-corrected percentile confidence intervals to make
statistical inferences when using PLS-SEM.

2.5. Number of bootstrap samples

The large spread in the number of bootstrap samples used in the
PLS-SEM applications listed in Table 1 is indicative of a lack of
guidelines regarding the minimum number of bootstrap samples
needed.

Regardless of the type of bootstrap confidence interval con-
structed, the ability to draw valid conclusions depends to a large
extent on the number of bootstrap samples or repetitions (J) used to
construct the bootstrap confidence interval. The work of Andrews
and Buchinsky (2000, 2001, 2002) revealed that the minimal
number of bootstrap repetitions needed depends on the desired
level of accuracy, the confidence level, the distribution of the data
(kurtosis), and the type of bootstrap confidence interval con-
structed. For instance, their Monte Carlo simulation revealed that
for a general accepted level of accuracy (i.e., 95%) J ¼ 2522 and
J ¼ 6962 bootstrap repetitions are needed for, respectively, sym-
metric confidence intervals and bias-corrected intervals. Note that
their figures represent minimum values as they are derived under
the assumption of normality.

Taking into account that the construction of bias-corrected
percentile bootstrap confidence intervals is considered the most
optimal choice in assessing PLS-SEM parameters, it is therefore
advised to use at least 10,000 bootstrap samples. This well exceeds
previous suggestions made by Efron and Tishirani (1994) and
Preacher and Hayes (2008) to draw, respectively, 1000 or 5000
bootstrap samples. Given the speed of today's desktop computing
technology, 10,000 bootstrap samples will hardly be problematic.

2.6. Other resampling strategies than bootstrapping

Although hardly used in PLS-SEM applications in European
management research, the jackknife resampling approach occa-
sionally appears in PLS-SEM analyses. Hence, for the sake of
completeness, the jackknife procedure, as well as its inferiority
compared with the bootstrap, is discussed below.
1 The term bias-corrected bootstrap confidence interval in this paper refers to
Efron's (1986) bias-corrected and accelerated percentile bootstrap confidence
interval.

Please cite this article in press as: Streukens, S., & Leroi-Werelds, S., Boots
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Similar to the bootstrap procedure, the jackknife also rests on
the assumption that the empirical sample distribution is a good
proxy for the population distribution. The resampling procedure
underlying the jackknife, however, is different from the bootstrap.
The jackknife estimator of a parameter is found by systematically
omitting each observation from a dataset and calculating the esti-
mate using the remaining N-1 observations and then taking the
average of all possible N jackknife estimates (see also Sahinler and
Topuz (2007) for more computational details as well as a discussion
of the N e d or “delete d” jackknife).

Thus, the jackknife can be considered a special case of boot-
strapping. According to Efron (1982) and Efron and Tibshirani
(1994), the bootstrap is preferred over the jackknife, as the latter
only uses limited information about the statistic, thereby being less
efficient. Furthermore, Sahinler and Topuz (2007) showed that the
bootstrap outperforms the jackknife in a least-squares context.
Finally, despite the arguments favoring the use of the bootstrap
over the jackknife, researchers will probably not be confronted
with the choice between these two resampling methods as soft-
ware packages such as SmartPLS 3 (Ringle, Wende, & Becker, 2015)
no longer offer the possibility to perform a jackknife procedure.

2.7. Reporting your bootstrap procedure

In line with the observation that often information concerning
the performed bootstrap procedure is lacking, as well as the sug-
gestions for improved bootstrap procedures outlined above, the
following is proposed regarding the bootstrap procedure's report-
ing. As a minimum, in addition to the statistic under consideration,
key elements that should always be reported regarding the boot-
strap analysis include the number of bootstrap runs, the size of the
bootstrap samples, the applied significance level, a detailed and
justified description of the way hypotheses are tested, and the
specification of the relevant software parameters (e.g., Ringle
et al.’s (2015) SmartPLS3 with no sign change).

3. Bootstrapping and hypothesis testing

Having outlined the merits of bias-corrected percentile boot-
strap confidence intervals and their construction, this section
shows how these confidence intervals can be implemented to
formally test hypotheses associated with frequently encountered
research phenomena. The structure of this section is again guided
by the data in Table 1. In particular, the focus is on the second
dimension on which the applications are described. Furthermore,
in order to promote the practical implementation of the ideas put
forward in this paper, an empirical illustration using real-life data is
provided.

3.1. Observations in PLS-SEM applications

Inspection of the PLS-SEM applications reported in Table 1 re-
veals that many of the possibilities that bootstrapping has to offer
remain unexploited by researchers. In particular, the following
observations deserve attention.

First of all, many PLS-SEM applications (92.3%) contain non-
direct effects (i.e., indirect and total effects). Although PLS-SEM is
perfectly capable of dealing with complex nomological networks
containing a large number of constructs (Ringle, Sarstedt, & Straub,
2012), the resulting non-direct effects are hardly investigated in
depth (see Becker et al. (2012) for a notable exception). Although
relatively few of the PLS-SEM applications explicitly assessed the
possible non-direct effects, inspection of recent studies (e.g.,
Jayasinghe, 2016; Rubera& Tellis, 2014; Wo, Ambrose,& Schminke,
2015) in key management journals shows that the non-direct
trapping and PLS-SEM: A step-by-step guide to get more out of your
g/10.1016/j.emj.2016.06.003



Fig. 1. Conceptual model empirical illustration.
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effects are being increasingly discussed. This is not surprising as it is
in line with the notion of sound yet actionable management
research (Kenworthy & Verbeke, 2015) as well as evidence-based
management (Albers, 2010; Rousseau, 2012).

With the exception of mediating variables, hypotheses
regarding direct effects are typically lacking (see also PLS-SEM
applications by Becker et al. (2012) in management and H€ock,
Ringle, and Sarstedt (2010) and V€olckner, Sattler, Hennig-Thurau,
and Ringle (2010) in related fields). Regardless of the issue as to
whether formal substantive hypotheses about non-direct effects
are necessary, assessing whether non-direct effects are statistically
significant is relevant as it contributes to effective management
practice (Henseler, Ringle, & Sarstedt, 2012; H€ock et al., 2010) as
well as valuable theoretical insights (Preacher & Hayes, 2008).
Please cite this article in press as: Streukens, S., & Leroi-Werelds, S., Boots
bootstrap results, European Management Journal (2016), http://dx.doi.or
Second, many of the reported PLS-SEM applications (92.3%)
contain endogenous constructs that are a function of at least two
different other constructs. It may be of theoretical and practical
relevance to make formal comparisons among the relative impacts
of different predictors (Albers, 2010; Preacher & Hayes, 2008).
However, none of the reported PLS-SEM applications performed
such hypothesis tests. At most, tentative statements are made, such
as “seems to have a larger impact than,” which implies that com-
parisons are indeed considered by researchers. Regarding the
relevance of a more formal assessment of the relative impact of
constructs, a similar line of reasoning as outlined above (i.e., non-
direct effects) applies.

Finally, all PLS-SEM applications (100%) report the amount of
variance explained for each endogenous construct (i.e., coefficient
trapping and PLS-SEM: A step-by-step guide to get more out of your
g/10.1016/j.emj.2016.06.003
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of determination or R2). In contrast, a large majority of PLS-SEM
applications (84.6%) do not assess whether the coefficient of
determination is significantly different from zero. Rather, re-
searchers rely on rules of thumb, such as R2 values of 0.67, 0.33, and
0.19 for endogenous constructs can be considered as, respectively,
strong, moderate, and weak (cf. Chin, 1998) or Falk and Miller's
(1992) suggestion that a cut-off value of 0.10 can be used to
decide whether an endogenous construct is adequately explained
by a set of exogenous constructs.

In response to these observations, Sections 3.3e3.6 explain how
bias-corrected percentile bootstrap confidence intervals can be
used to formally assess, respectively, direct effects, non-direct ef-
fects, comparison of effects, and the coefficient of determination.
Before that, Section 3.2 introduces the empirical example that will
be used to illustrate the various procedures.

3.2. Empirical illustration

The empirical illustration's conceptual model, which is dis-
cussed in the remainder of this section, is outlined below in Fig. 1.

Datawere collected from among customers of a Flemish telecom
provider (effective n ¼ 268) using an online questionnaire. All
constructs were measured using validated scales. To assess the
scales’ psychometric properties we relied on the approach outlined
by Leroi-Werelds, Streukens, Brady, and Swinnen (2014). All scales
possessed good psychometric properties. SmartPLS 3 (Ringle et al.,
2015) was used to estimate the measurement and structural model
parameters and to generate the accompanying bootstrap estimates
(J ¼ 10,000; no sign changes). Bias-corrected percentile confidence
intervals were constructed to test the relevant hypotheses. Further
details concerning the empirical illustration are available upon
request from the first author.

Appendix A offers a concise step-by-step guide on how to
construct bias-corrected percentile bootstrap confidence intervals
for all types of situations described below. Again, all data and
bootstrap output are available upon request from the first author.

3.3. Testing direct effects

A direct effect is the hypothesized relationship between two
constructs, which most probably reflects the most common situa-
tion for hypothesis testing in a PLS-SEM application. The bootstrap
output contains J estimates for each of these direct effects onwhich
the procedures outlined in Table 2 can be readily applied. Although
research hypotheses are typically related to structural model pa-
rameters, it should be noted that the hypothesis testing procedure
for direct effects also applies to assessing the statistical significance
of measurement model parameters.

3.4. Testing non-direct effects

Based on the bootstrap estimates for the direct relationships,
confidence intervals can be constructed for non-direct relation-
ships, such as indirect effects and total effects. In general terms, an
indirect effect of latent construct k on latent construct l, denoted
byrkl, can be computed as the product of the model coefficients
accompanying the paths connecting latent construct k to latent
construct l (denoted bywij). Equation (4) compactly summarizes
this idea:

rkl ¼
0@ Y

ðLVk;LVlÞ2P

wij

1A (4)

In terms of the model presented in Fig. 1, the indirect path from
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direct mail (DM) to word of mouth (WOM) via relationship satis-
faction (RELSAT) equalsr18¼b15*b58. As the original bootstrap
output containsJ estimates for b15 andb58, J estimates of parame-
terr18 indicating the designated indirect effect can be calculated.
Based on the resulting empirical distribution of these calculated r18
parameters, a bootstrap confidence interval can be constructed
following the procedures outlined in Table 2.

Besides indirect effects, bootstrap confidence intervals can also
be constructed for so-called total effects. Assuming a non-recursive
(acyclic) structural model, let parameter dkl(ksl) reflect the total
effect of latent construct k on latent construct l. Thus, parameter dkl
reflects the entire set of relationships in a structural model con-
necting latent construct k to latent construct l. Parameter dkl can be
calculated from the empirical results describing the set of re-
lationships connecting latent construct k to latent construct l, as
shown below in equation (5):

dkl ¼
X

P:ðLVki/LVlÞ

0@ Y
ðLVk ;LVlÞ2P

wij

1A (5)

In equation (5), wij are the structural model coefficients
belonging to the paths that connect latent construct k to latent
construct l. In words, equation (5) states that the total effect of
construct k on construct l can be computed by calculating the
product of the structural model coefficientswij belonging to each of
the separate direct relationships connecting construct k and
construct l and subsequently summing these products over all
relevant paths connecting construct k and construct l.

In terms of the conceptual model presented in Fig. 1, the total
effect of DM on WOM, denoted byd18, equalsb15b58þb18. To assess
the statistical significance of the total effects, the procedures out-
lined in Table 2 must be applied to the distribution of the J esti-
mates for d18¼b15b58þb18, which follows from the bootstrap
estimates of the individual structural model parameters involved
(i.e., original bootstrap output containing the bootstrap estimates
on the direct effects).

In terms of a chain of effects, the idea expressed in equation (5)
can also be extended to include measurement model parameters
for formative exogenous constructs and reflective endogenous
constructs. To illustrate this, consider the part of our model related
to the direct and indirect relationships between DM (formative
construct) and WOM (reflective construct), as presented in Fig. 2.

A change in formative indicator results in a change in the
construct (cf. Jarvis, MacKenzie,& Padsakoff, 2003), and this ignites
a chain of effects as implied by the inter-construct nomological web
in which the particular construct acts as a predictor. Therefore, the
measurement model parameter associated with the relationship
between the formative indicator and this construct can therefore be
considered to be a part of the entire chain of effects connecting that
formative indicator to subsequent constructs. In a similar vein, an
endogenous construct's reflective indicator can also be considered
to be part of such a chain of effects. That is, as the change in a
reflectively modeled construct results in a change of its indicators
(cf. Jarvis et al., 2003), the chain of effects leading to the change in a
particular reflective endogenous construct extends to this con-
struct's indicators. For a general discussion about the modeling
issues associated with endogenous formative variables, and
therefore the limitations to extend the principles of equation (5) to
this type of variable, the interested reader is referred to the work of
Cadogan and Lee (2013).

For example, the total impact of DM's formative indicator dm01
on the WOM's reflective indicator wom01 equals
(l11b18l81)þ(g11b15b58g81).
trapping and PLS-SEM: A step-by-step guide to get more out of your
g/10.1016/j.emj.2016.06.003



Fig. 2. Non-direct effects and measurement model parameters.

S. Streukens, S. Leroi-Werelds / European Management Journal xxx (2016) 1e158
3.5. Comparison of coefficients

Based on the original bootstrap output, bootstrap confidence
intervals can be constructed to formally assess whether the relative
magnitudes of coefficients are statistically equal. In terms of the
empirical illustration, this could involve testing whether the effects
of DM and PT on RELSAT are equal.

Following the work of Preacher and Hayes (2008), this implies
testing whether the difference between two coefficients, say bi
andbj, is equal to zero (i.e., H(0):fij¼bi�bj¼0). Based on the original
bootstrap output containing J estimates of both bi andbj, the dif-
ference between the involved coefficients is determined, resulting
in J values forfij. Subsequently, based on the distribution of
parameter fij, bootstrap confidence intervals using the procedures
outlined in Table 2 can be constructed to formally test this hy-
pothesis. Furthermore, it should be noted that the comparison of
coefficients is not limited to contrasting only direct effects. A
similar procedure can be used to compare non-direct effects. For
example, comparing the total effects of DM and PT on HELP boils
down to testing((b15,b57)þb17)�((b25,b57)þb27)¼0.

Finally, if one is interested in comparing more than two effects,
one must account for the multiple testing problem, or equivalently
control the family-wise error rate, by applying a Bonferroni-type
correction (see also Neter, Kutner, Nachtsheim, and Wasserman
(1996) for an excellent treatment of these topics).
3.6. Statistical significance of the coefficient of determination

In a call for accompanying the coefficient of determination with
a measure of precision, Ohtani (2000) drew attention to the virtues
of bootstrapping. To formally assess whether an endogenous con-
struct's R2 value is significantly different from zero in a PLS-SEM
context, bootstrap confidence intervals, as outlined in Table 2, can
be constructed around the estimated R2 value. In doing so,
Table 3
PLS-SEM bootstrap recommendations.

Topic Recommendation

Resampling method Bootstrapping is preferred over jackknifing

Number of bootstrap
samples

At least 10,000

Size bootstrap samples Equal to the size of the original sample (i.e., n
observations or effective sample size)

Parameter evaluation Bias-corrected percentile bootstrap confidenc
preferred over regular percentile and standar
bootstrap confidence intervals and bootstrap

Software setting
(SmartPLS 3)

No sign change option
Bias-corrected and accelerated (BCa) bootstra
the bias-corrected percentile confidence inter
this paper)

Reporting All of the elements mentioned in this table as
statistic being tested and the significance leve
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Tenenhaus, Vinzi, Chatelin, and Lauro's (2005) formula to compute
an endogenous construct's coefficient of determination plays a
pivotal role, as shown in equation (6):

R2 ¼
X
j

���bbjcor
�
hi; xj

���� (6)

Here, bj is the structural model parameter describing the rela-
tionship between xj andhi, whereas cor(hi,xj) is the (latent variable)
correlation between these two constructs.

To construct a bootstrap confidence interval for the coefficient
of determination, the following steps must be taken: Use the
estimation results from each of the J bootstrap samples and the
latent variable correlations in combination with equation (6) to
create J values of the coefficient of determination. Then, based on
these J coefficients of determination, construct a bias-corrected
percentile bootstrap confidence interval using the procedures lis-
ted in Table 2.

As can be seen in equation (6), it is possible to increase the co-
efficient of determination by simply adding exogenous constructs.
This of course compromises the principle of model parsimony.
Similar to regular regression analysis, it is possible in the case of
PLS-SEM to calculate the adjusted coefficient of determination (R

2
),

which introduces a penalty for the inclusion of each additional
exogenous construct to the structural equation. Equation (7) shows
that the adjusted coefficient of determination can be easily derived
from the regular coefficient of determination, which is described
above:

R
2 ¼ 1� n� 1

n� k

�
1� R2

�
(7)

In equation (7), R2 is the coefficient of determination, n is the
sample size, and k represents the number of exogenous constructs
hypothesized to explain an endogenous construct. Also, for the
adjusted coefficient of determination, a bootstrap confidence
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interval can be constructed (cf. Ohtani, 2000). In this case, the J
values for R

2
provide the necessary input.

In terms of our empirical illustration, the coefficient of deter-
mination for RELSAT equalsðb15,corrðLV1; LV5Þ þ b25,corrðLV2
; LV5Þ þ b35,corrðLV3; LV5Þ þ b45,corrðLV4; LV5ÞÞ. Note that the
latent variable correlations are not available for each bootstrap
sample when using standard PLS-SEM software. Here the values for
the original sample are used for calculating all J coefficients of
determination. To arrive at the adjusted coefficient of determina-
tion, equation (7) must be applied. For the current situation, n
equals 268 and k equals 3.

4. Conclusion

According to Chia (2014), conducting relevant and rigorous
European management research requires researchers “to imagi-
natively seek out ever-newer meanings to both exceptional and
ordinary everyday experiences, familiar and unfamiliar happen-
ings, and taken-for-granted conceptual formulations” (Chia, 2014,
p. 686). PLS-SEM's exploratory characteristic perfectly fits this point
of view and can therefore be considered a valuable data analytical
approach for European management researchers.

From a statistical explanatory modeling point of view, hypoth-
esis testing is a critical element in developing relevant and rigorous
theory (Shmueli & Koppius, 2011). In a PLS-SEM context, hypoth-
esis testing relies on bootstrapping. As evidenced by the overview
of PLS-SEM applications in European management research (see
also Table 1), the accompanying bootstrap procedures are often
suboptimal. In response to this observation, this paper provides a
detailed overview of how to construct bias-correct percentile
bootstrap confidence intervals and to demonstrate how these
bootstrap confidence intervals can be used to test hypotheses
related to frequently encountered research situations in manage-
ment research. Although not directly related to a particular sub-
stantive European management research domain, this paper
contributes to the European management research domain in the
following ways.

First, a key recommendation of our work is that in order to make
better statistical inferences, which is one cornerstone of (European)
management research (Cashen & Geiger, 2004; Thietart, 2001),
constructing bias-corrected percentile bootstrap confidence in-
tervals based on a large number of bootstrap samples (i.e., at least
10,000) offers a powerful approach to test a large variety of hy-
potheses. In terms of practical implementation, Table 3 presents a
set of guidelines and minimal requirements for PLS-SEM bootstrap
procedures that are relevant to researchers, editors, and reviewers
alike.

Second, as evidenced by the work of Hair et al. (2012), models in
management research become more and more complex, thereby
increasing the likelihood of non-direct effects (i.e., indirect and
total effects) as well as the need to compare these effects. In line
with Chia’s (2014) call to be “empirically sensitive and to adopt a
syncretistic approach” (p. 688) to understanding phenomena,
formally assessing the statistical significance of non-direct effects
as well as formally comparing the magnitude of effects will
contribute to the development of relevant and rigorous European
management theory.

Third, a model's explanatory power, which is another core
element in explanatory statistical modeling (Shmueli & Koppius,
2011), can be evaluated empirically by assessing the significance
and magnitude of the coefficient of determination (i.e., R2).
Although R2 values of endogenous constructs are typically reported
in a PLS-SEM application, the accompanying evaluation of the R2

value is generally done based on simple heuristics. By demon-
strating how to formally assess the significance of an R2 value, our
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work therefore takes an important step in evaluating, according to
Kenworthy and Verbeke (2015), one of the key characteristics of
truly valuable European management theory: explanatory capacity.

5. Prediction: bootstrapping and cross validation2

As already mentioned at the start, the emphasis of the current
paper is on explanatory modeling. It should be noted that explan-
atory power does not imply predictive power (Shmueli & Koppius,
2011; Shmueli, 2010). As such, the need for explicit assessment of
predictive power is strongly emphasized in recent PLS-SEM publi-
cations (e.g., Cepeda Carri�on, Henseler, Ringle, & Rold�an, 2016;
Evermann & Tate, 2016; Shmueli, Ray, Velasquez-Estrada, &
Chatla, 2016).

The central tenet of assessing predictive power focuses on the
model's ability to generate accurate predictions of new observa-
tions (i.e., out-of-sample predictions). According to Harrell (2001),
so-called internal validation is the preferred approach in vali-
dating a model's predictive performance. Departing from a single
dataset, internal validation involves using one set of subjects to
estimate the model parameters (i.e., training sample) and subse-
quently using these parameter estimates to validate the model's
performance on a set of different subjects (i.e., validation sample).
One method that is particularly relevant and useful in this respect
is cross validation.

Cross validation is a resampling procedure used to obtain
nearly unbiased estimates of model performance without sacri-
ficing the sample size. Wold (1982) advocated the use of K-fold
cross-validation or blindfolding procedures to assess the model's
predictive relevance. In K-fold cross validation, the original
dataset is randomly partitioned into K equal-sized subsets. Of
these K subsets, a single subset is used as a validation sample,
whereas the other K�1 subsets are put together and are used as
a training sample. These procedures are repeated K times so that
each K subset acts as a validation sample. Finally, the K results
are then combined to produce a single estimation (see also
Tenenhaus et al., 2005). With regard to K, a value from 5 to 10
has been proven to be feasible given a sufficient sample size
(Chin, 1998).

So how does this relate to this paper's focus on improved
bootstrap procedures for testing hypotheses (i.e., explanatory
modeling) in a PLS-SEM context? Consistent with the work of
Schmueli and Koppius (2011), who suggested evaluating a model's
predictive power even if the main aim of the modeling is explan-
atory, employing both the bootstrap procedures suggested in this
paper as well as a cross-validation procedure to validate the model
may lead to a more comprehensive and insightful model evalua-
tion. Not only is this especially valuable given PLS-SEM's
prediction-oriented nature (Cepeda Carri�on et al., 2016), it is also
pivotal in the pursuit of Chia's (2014) “scholarship of common
sense,” as the evaluation of predictive performance contributes to
the developing of new theory, developing and evaluating as well as
improving construct operationalization, comparing theories,
improving existing theory, assessing relevance, and evaluating the
predictability of phenomena (Shmueli & Koppius, 2011; Shmueli
et al., 2016).

6. Limitations

In this paper, the focus is on a limited set of bootstrap confidence
intervals. It was deliberately chosen to focus on those bootstrap
trapping and PLS-SEM: A step-by-step guide to get more out of your
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confidence intervals that can be constructed by the researcher us-
ing the bootstrap output from standard PLS-SEM software. How-
ever, more bootstrap procedures, such as the double bootstrap and
the 0.632 bootstrap, are available that might outperform the ones
presented in this paper. Regarding these advanced bootstrap pro-
cedures in a PLS-SEM context, more academic research and the
development of user-friendly software applications are needed.

Appendix A. Constructing bias-corrected percentile bootstrap
confidence intervals step by step

This appendix provides a detailed, step-by-step explanation of
A B C D E
1 FB01 MD^3 MD^2 OSE
2 Original sample esƟmate 0,654
3 Mean 0,651
4 Sum 0,735 30,110
5 Accel denom 991,324
6 AcceleraƟon coeff 0,001
7 Percentage 0,484
8 Z(0) -0,041
9 Z-lower -1,96

10 Z-upper 1,96
11 Z-lower prime -2,039
12 Z-upper prime 1,881
13 p-lower prime 0,021
14 p-upper prime 0,970
15 ObservaƟon lower bound 207
16 ObservaƟon upper bound 9700
17 CI lower bound 0,529
18 CI upper bound 0,745
19
20
21
22 FB01 MD^3 MD^2 OSE
23 Sample 0 0,671 -7,54534E-06 0,000385 0
24 Sample 1 0,647 8,43908E-08 1,92E-05 1
25 Sample 2 0,685 -3,79795E-05 0,00113 0
26 Sample 3 0,757 -0,001178042 0,011154 0

10017 Sample 9994 0,735 -0,000584564 0,006991 0
10018 Sample 9995 0,686 -4,1471E-05 0,001198 0
10019 Sample 9996 0,62 3,09186E-05 0,000985 1
10020 Sample 9997 0,588 0,000254675 0,004018 1
10021 Sample 9998 0,692 -6,69912E-05 0,001649 0
10022 Sample 9999 0,735 -0,000584564 0,006991 0

Bootstrap samples (J = 10,000)
the construction of bias-corrected percentile bootstrap confidence
intervals for direct effects, non-direct effects, coefficient of deter-
mination, and the comparison of coefficients. The construction of
the confidence intervals was done using Excel. The bootstrap
output used in this appendix as well as the original data are
available upon request from the first author. Readers who are
interested in the theoretical background as well as details per-
taining to the accompanying empirical study can also request more
information on this from the first author.
General procedure (direct effects)

Exhibit A1 provides an overview of the construction of the bias-
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corrected percentile bootstrap confidence interval in Excel. The
original bootstrap output, as generated by SmartPLS 3 (Ringle et al.,
2015), starts in row 23. Rows 1e18 show the actual construction of
the bootstrap confidence interval and are based on equations
(3a)e(3e) presented in Table 2 of the paper. Note that the procedure
outlined below boils down to the construction of bias-corrected
bootstrap confidence intervals for direct effects (i.e., both struc-
tural and measurement model parameters). Furthermore, this
general procedure forms the basis for all other bootstrap confi-
dence intervals discussed in this paper.

Exhibit A1: Bias-corrected percentile bootstrap confidence in-
terval's direct effect (general procedure).
Step-by-step instructions to construct bias-corrected percentile
bootstrap confidence intervals.

Step 1: Preparing the Excel worksheet.
Step 1.1: Copying the bootstrap output into Excel.
The bootstrap output was generated in SmartPLS 3 and were

copied into an Excel worksheet (via “export to clipboard/CSV” in
the SmartPLS 3 program). The bootstrap output consists of a row
containing the labels (see row 1 in Exhibit A1) and column con-
taining J bootstrap estimates for each variable (starts in row 23 of
Exhibit A1).

Step 1.2: Adding columns.
For each variable, three additional columns were added: MD^3,

MD^2, and OSE. Furthermore, at the top of the worksheet, a number
trapping and PLS-SEM: A step-by-step guide to get more out of your
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of rows (i.e., 21) were inserted for the calculations needed to
construct the bias-corrected bootstrap confidence intervals. The
names of these additional rows and columns are insertedmanually.

Step 1.3: Adding rows.
The figures in row 2 (i.e., original sample estimates) stem from

the SmartPLS 3 calculation results and are copied in the Excel
worksheet from the SmartPLS 3 output. All other figures in the
columns and rows inserted in step b are inserted manually or
calculated based on the bootstrap data.

Note: it is possible to hide the entire midsection of the bootstrap
output while performing all calculations. The key advantage is that
you do not have to scroll through the entire list of bootstrap estimates.

Step 2: The acceleration coefficient.
Calculating the acceleration coefficient that is shown in cell B6

and calculated as shown in equation (3c) in the paper is done via
the following substeps:

Step 2.1: Column MD^3.
The column namedMD^3 is related to the numerator of equation

(3c) in Table 2 and equals the difference between each bootstrap
sample's estimate andmean bootstrap estimate raised to the power
of 3. The mean bootstrap estimate can be found in cell B3 and is
computed as “ ¼ AVERAGE(B23:B10022)”. For bootstrap sample
0 (row 23), the entry for MD^3 equals “¼(B23�B$3)̂ 3”. Apply to all
bootstrap samples.

Step 2.2: Column MD^2.
The column named MD^2 is related to the denominator of

equation (3c) in Table 2 and equals the difference between each
bootstrap sample's estimate and mean bootstrap estimate raised to
the power of 2. Again, the mean bootstrap estimate can be found in
cell B3. For bootstrap sample 0 (row 23), the entry for MD^3 equals
“¼(B23�B$3)̂ 2”. Apply to all bootstrap samples.

Step 2.3 The sums of MD^3 and MD^2.
Finally, the sum of column MD^3 and MD^2 is, respectively,

determined. The corresponding sums are then stored in cells C4
(¼SUM(C23:C10022) and D4 (¼SUM(D23:D10022).

Step 2.4 The actual acceleration coefficient.
To avoid mistakes, an intermediate step is taken to calculate the

denominator of the acceleration coefficient (stored in cell D5).
Following equation (3c) of the paper, this boils down to “¼ 6*(D4^3/
2)”. The actual acceleration coefficient (stored in cell B6) now
equals “ ¼ C4/D5”.

Step 3: The Z-values and p-values.
The third step involves the calculation of the various Z-values

(rows 8e12) and p-values (rows 13e14) needed in the construction
of the confidence interval.

Step 3.1: Calculating Z(0)
The value for Z(0), which can be found in cell E8, involves the

following steps:

Step 3.1.1: The column named “OSE” involves the comparison
between each bootstrap sample estimate and the original
sample estimate and is needed for the calculation of Z(0). If the
bootstrap sample estimate (listed in cells B23eB10022) is
smaller than the original sample estimate (cell B2), the corre-
sponding cell in the OSE column is assigned a value of “1,” and in
all other cases, a value of “0” is assigned. This is easily done by
means of the “IF” function in Excel. Thus, for bootstrap sample
0 (row23), this equals “ ¼ IF(B23 < B$2; 1;0)”.
Step 3.1.2: Cell E7 reflects the proportion of bootstrap samples
for which the estimate was smaller than the original sample
estimate and equals “ ¼ SUM(E23:E10022)/10000”.
Step 3.1.3: The actual value for Z(0) can be found in cell E8 and is
derived from the output obtained in step 3.1.2. In particular, it is
equal to “ ¼ NORM.S.INV(E7)”.
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Step 3.2: Calculating Z-lower prime and Z-upper prime.
The values for Z-lower prime (see also equation (3a) in Table 2)

and Z-upper prime (see also equation (3b) in Table 2) are stored in
cells B11 and B12, respectively.

Step 3.2.1: The values for Z-lower (cell B9) and Z-upper (cell B10)
are manually inserted. Note that their values depend on the
significance level the researcher wants to employ. In the case of
a 95% (90%) confidence interval, Z-lower (i.e., ZLB) and Z-upper
(i.e., ZUB) are �1.96 (�1.645) and 1.96 (1.645), respectively.
Step 3.2.2: Using the acceleration coefficient (cell B6), the Z(0)
value (cell E8), and the value for Z-lower (cell B9), the value for
Z-lower prime (cell B11) is calculated as implied by equation
(3a) in Table 2. For the situation at hand, this equals
“ ¼ E8þ((E8þB9)/(1�(B6*(E8þB9))))”.
Step 3.2.3: Using the acceleration coefficient (cell B6), the Z(0)
value (cell E8), and the value for Z-upper (cell B10), the value for
Z-upper prime (cell B12) is calculated as implied by equation
(3b) in Table 2. For the situation at hand, this equals
“ ¼ E8þ((E8þB10)/(1�(B6*(E8þB10))))”.

Step 3.3: The p-values accompanying the Z-prime values.
To arrive at the p-values associated with the Z-prime values

determined in step 3.2.2 (i.e., Z-lower prime) and step 3.2.3 (i.e., Z-
upper prime), the “NORM.S.DIST” function in Excel is used.

Step 3.3.1: The p-value associated with Z-lower prime (i.e., p-
lower prime in cell B13) equals “ ¼ NORM.S.DIST(B11, TRUE)”.
Step 3.3.2: The p-value associated with Z upper prime (i.e., p-
lower prime in cell B14) equals “ ¼ NORM.S.DIST(B12, TRUE)”.

Step 4: Determining the bounds of the confidence interval.
This fourth and final step in the construction of the bias-

corrected percentile bootstrap confidence intervals consists of the
following two substeps:

Step 4.1: Observation numbers.
The observation number that corresponds to the lower and

upper bounds of the confidence interval is derived by multiplying
the respective p-values with the number of bootstrap samples.

Step 4.1.1: Observation number reflecting the lower bound can
be in cell B15 and equals “ ¼ B13*10,000”.
Step 4.1.2: Observation number reflecting the upper bound can
be in cell B16 and equals “ ¼ B14*10,000”.

Step 4.2: The bounds.
The final step is to determine which parameter estimates

correspond to the observation numbers obtained in the previous
step.

Step 4.2.1: The parameter estimate marking the lower bound of
the confidence interval can be found in cell B17 and equals
“ ¼ SMALL(B23:B10022; B15)”.
Step 4.2.2: The parameter estimate marking the upper bound of
the confidence interval can be found in cell B18 and equals
“ ¼ SMALL(B23:B10022; B16)”.
Non-direct effects

The construction of the bias-corrected bootstrap confidence
interval for indirect effects is demonstrated below for the indirect
effect from IC on FDBCK via RELSAT. The bootstrap estimates for the
involved direct effects (i.e., the relationships “IC-RELSAT” (Exhibit
A2 cell B23 and below) and “RELSAT-FDBCK” (Exhibit A2 cell C23
trapping and PLS-SEM: A step-by-step guide to get more out of your
g/10.1016/j.emj.2016.06.003



S. Streukens, S. Leroi-Werelds / European Management Journal xxx (2016) 1e1512
and below)) are the starting point. Furthermore, the original sam-
ple estimates for these direct relationships are recorded from the
SmartPLS 3 output (Exhibit A2 cells B2 and C2, respectively).

Exhibit A2: Bootstrap confidence interval's non-direct effects.
A B C D E F G H

1 IC-RELSAT RELSAT-FEEDBACK IC-RELSAT-FEEDBACK MD^3 MD^2 OSE
2 Original sample esƟmates 0,292 0,190 Original sample esƟmate 0,05548
3 Mean 0,291 0,188 Mean 0,054
4 Sum -0,040 6,818
5 Accel denom 106,820
6 AcceleraƟon coeff 0,000
7 Percentage 0,538
8 Z(0) 0,094
9 Z-lower -1,96

10 Z-upper 1,96
11 Z-lower prime -1,773
12 Z-upper prime 2,147
13 p-lower prime 0,038
14 p-upper prime 0,984
15 ObservaƟon lower bound 381
16 ObservaƟon upper bound 9841
17 CI lower bound 0,011
18 CI upper bound 0,113
19
20
21
22 IC-RELSAT RELSAT-FEEDBACK IC-RELSAT-FEEDBACK MD^3 MD^2 OSE
23 Sample 0 0,241 0,171 Sample 0 0,041211 2,26359E-06 0,000172398 1
24 Sample 1 0,311 0,084 Sample 1 0,026124 2,24664E-05 0,000796201 1
25 Sample 2 0,279 0,159 Sample 2 0,044361 9,94023E-07 9,96011E-05 1
26 Sample 3 0,298 0,175 Sample 3 0,05215 1,05184E-08 4,80064E-06 1

10017 Sample 9994 0,242 0,273 Sample 9994 0,066066 -1,61189E-06 0,000137475 0
10018 Sample 9995 0,298 0,247 Sample 9995 0,073606 -7,14998E-06 0,000371139 0
10019 Sample 9996 0,302 0,237 Sample 9996 0,071574 -5,11776E-06 0,000296975 0
10020 Sample 9997 0,305 0,142 Sample 9997 0,04331 1,3423E-06 0,000121684 1
10021 Sample 9998 0,215 0,162 Sample 9998 0,03483 7,42747E-06 0,00038068 1
10022 Sample 9999 0,337 0,225 Sample 9999 0,075825 -9,91615E-06 0,000461561 0

Bootstrap samples (J = 10,000)

Input for indirect effect

Bootstrap results relevant direct effects (J = 10,000)

Bias-corrected bootstrap confidence interval
To construct the actual bias-corrected bootstrap confidence in-
terval for the indirect effect, the same procedure as outlined above
for the confidence intervals of the direct effects needs to be fol-
lowed, but then on the bootstrap estimates for the relevant indirect
effect. For the situation at hand, this is shown in Exhibit A2 columns
DeH). In order to construct the relevant confidence interval, the
following needs attention:

� The figures in column E under “IC-RELSAT-FDBCK” present the
product of the involved direct effects for each bootstrap sample
(cf. equation (4) in the paper) and represent the data on the
confidence interval to be constructed.

� The original sample estimated (cell E2 and colored black) is not
copied from the SmartPLS output, but is the product of the
original sample estimates of the involved direct effects (i.e., Cell
E2 equals “ ¼ B2*C2”).

Note that if one is interested in assessing the significance of a total
effect a similar procedure applies, yet the data column on which the
bootstrap confidence interval is to be constructed must reflect the total
effect adequately as implied by equation (5) in the paper.

Coefficient of determination

To calculate the bias-corrected confidence interval for an
endogenous construct's coefficient of determination, equation (6)
plays a pivotal role. To construct this confidence interval, the gen-
eral procedure (see above) must be performed on a data column
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containing the R2 values of the bootstrap samples after the
following preparatory steps are taken. These preparatory steps are
outlined below for the construct “RELSAT” (see also Exhibit A3).
� Calculate the R2 value for each bootstrap sample according to
equation (6). The inputs for this are bootstrap coefficients
associated with the direct relationships (i.e., columns B, D, F, and
H cell 24 and below) and the latent variable correlations (i.e.,
cells B4, D4, F4, and H4, which are shaded gray). These latent
variable correlations are equal for each bootstrap sample and
stem from SmartPLS 3 calculation results.

� The calculation of the R2 values is done in stages. That is, per
exogenous construct the product of the parameter accompa-
nying its link to the endogenous construct and the corre-
sponding latent variable correlation is calculated. The results of
these calculations are listed in columns C, E, G, and I in cell 24
and below. So, for bootstrap sample 0 (row24), this leads to cell
C24 being equal to “ ¼ ABS(B$4)*ABS(B24)” and so forth.

� To arrive at the column containing the data on which the con-
fidence interval is to be constructed (i.e., column K cell 24 and
below), the different products are summed. Thus, in terms of
bootstrap sample 0, the bootstrap R2 value (i.e., cell K24) cor-
responds to “ ¼ C24 þ E24 þ G24 þ I24”.

� The original sample estimate for the R2 value (cell K3) is calcu-
lated in a similar fashion as the R2 values for the bootstrap
samples, but then using the original sample estimates that are
obtained from the SmartPLS 3 output (see also Exhibit A3,
specifically the gray cells in row 5).

Exhibit A3: Construction bootstrap confidence interval coeffi-
cient of determination.
trapping and PLS-SEM: A step-by-step guide to get more out of your
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A B C D E F G H I J K L M N
1
2 R2-RELSAT MD^3 MD^2 OSE
3 DM-RELSAT R2-DM IC-RELSAT R2-IC PT-RELSAT R2-PT TR-RELSAT R2-TR Original sample esƟmate 0,546
4 CorrelaƟon with DV 0,444 0,606 -0,420 0,651 Mean 0,545
5 Original sample esƟmates 0,179 0,079 0,292 0,177 -0,168 0,071 0,337 0,219 Sum 0,011 3,023
6 Accel denom 31,529
7 AcceleraƟon coeff 0,000
8 Percentage 0,511
9 Z(0) 0,028

10 Z-lower -1,96
11 Z-upper 1,96
12 Z-lower prime -1,902
13 Z-upper prime 2,018
14 p-lower prime 0,029
15 p-upper prime 0,978
16 ObservaƟon lower bound 286
17 ObservaƟon upper bound 9782
18 CI lower bound 0,511
19 CI upper bound 0,579
20
21
22
23 DM-RELSAT R2-DM IC-RELSAT R2-IC PT-RELSAT R2-PT TR-RELSAT R2-TR R2-RELSAT MD^3 MD^2 OSE
24 Sample 0 0,247 0,110 0,241 0,146 -0,258 0,108 0,286 0,186 Sample 0 0,55026 -1,1719E-07 2,39474E-05 0
25 Sample 1 0,204 0,091 0,311 0,188 -0,152 0,064 0,306 0,199 Sample 1 0,542088 3,52355E-08 1,07478E-05 1
26 Sample 2 0,196 0,087 0,279 0,169 -0,203 0,085 0,352 0,229 Sample 2 0,57051 -1,58958E-05 0,000632201 0
27 Sample 3 0,147 0,065 0,298 0,181 -0,011 0,005 0,479 0,312 Sample 3 0,562305 -4,85997E-06 0,000286917 0

10018 Sample 9994 0,161 0,071 0,242 0,147 -0,141 0,059 0,406 0,264 Sample 9994 0,541662 5,08334E-08 1,37225E-05 1
10019 Sample 9995 0,134 0,059 0,298 0,181 -0,198 0,083 0,276 0,180 Sample 9995 0,50292 7,64755E-05 0,001801696 1
10020 Sample 9996 0,159 0,071 0,302 0,183 -0,155 0,065 0,401 0,261 Sample 9996 0,579759 -4,06814E-05 0,001182852 0
10021 Sample 9997 0,168 0,075 0,305 0,185 -0,237 0,100 0,295 0,192 Sample 9997 0,551007 -1,79465E-07 3,18165E-05 0
10022 Sample 9998 0,237 0,105 0,215 0,130 -0,304 0,128 0,252 0,164 Sample 9998 0,52725 5,94586E-06 0,000328203 1
10023 Sample 9999 0,202 0,090 0,337 0,204 -0,216 0,091 0,273 0,178 Sample 9999 0,562353 -4,9014E-06 0,000288545 0

Bias-corrected bootstrap confidence interval

Bootstrap samples (J = 10,000)

CalculaƟon coefficient of determinaƟon (R2) - Original sample

CalculaƟon coefficient of determinaƟon (R2) - Bootstrap sample
Comparing coefficients

Exhibit A4 shows the construction of a bias-corrected percentile
bootstrap confidence interval concerning the null hypothesis that
DM and IC have an equal effect on RELSAT. Again, the general
procedure outlined above takes central stage. For the situation at
hand, the confidence interval is constructed as follows:

� Columns B and C (rows 24 and below) contain the bootstrap
estimates for the effects to be compared.
A B C D
1
2
3 DM-RELSAT IC-RELSAT Original sample esƟmat
4 Original sample esƟmates 0,179 0,292 Mean
5 Sum
6 Accel denom
7 AcceleraƟon coeff
8 Percentage
9 Z(0)

10 Z-lower
11 Z-upper
12 Z-lower prime
13 Z-upper prime
14 p-lower prime
15 p-upper prime
16 ObservaƟon lower boun
17 ObservaƟon upper boun
18 CI lower bound
19 CI upper bound
20
21
22
23 DM-RELSAT IC-RELSAT
24 Sample 0 0,247 0,241 Sample 0
25 Sample 1 0,204 0,311 Sample 1
26 Sample 2 0,196 0,279 Sample 2
27 Sample 3 0,147 0,298 Sample 3

10018 Sample 9994 0,161 0,242 Sample 9994
10019 Sample 9995 0,134 0,298 Sample 9995
10020 Sample 9996 0,159 0,302 Sample 9996
10021 Sample 9997 0,168 0,305 Sample 9997
10022 Sample 9998 0,237 0,215 Sample 9998
10023 Sample 9999 0,202 0,337 Sample 9999

Comparison of coefficients

Comparison of coefficients
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� Cells B4 and C4 contain the original sample estimates copied
from the SmartPLS 3 output.

� Column E (cell 24 and below) contains the differences between
the coefficients involved. For bootstrap sample 0 (cell E24), this
equals “ ¼ B24eC24amprdquosemicolon

� The confidence interval is created using the data in column E
(cell 24 and below).

Exhibit A4: Bootstrap confidence interval's comparison of
effects.
E F G H

DM vs IC MD^3 MD^2 OSE
e -0,113

-0,112
-0,136 70,151

3525,362
0,000

0,496
-0,009

-1,96
1,96

-1,979
1,941
0,024
0,974

d 239
d 9739

-0,277
0,050

DM vs IC MD^3 MD^2 OSE
0,006 -1,38913E-07 2,68222E-05 0

-0,107 -2,48435E-05 0,000851415 0
-0,083 -2,48435E-05 0,000851415 0
-0,151 5,85059E-05 0,001507069 1
-0,081 -3,03101E-05 0,000972131 0
-0,164 0,000139161 0,002685414 1
-0,143 2,92779E-05 0,000949933 1
-0,137 1,52917E-05 0,000616081 1
0,022 -0,00241576 0,018004009 0

-0,135 1,18851E-05 0,000520797 1

Bias-corrected bootstrap confidence interval

Bootstrap samples (J = 10,000)

trapping and PLS-SEM: A step-by-step guide to get more out of your
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