ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Considering on the current difficulties of predicting the compressive strength of recycled aggregate concrete, this paper proposes a prediction model based on deep learning theory. First, the deep features of water-cement ratio, recycled coarse aggregate replacement ratio, recycled fine aggregate replacement ratio, fly ash replacement ratio as well as their combinations are learned through a convolutional neural networks. Then, the prediction model is developed using the softmax regression. 74 sets of concrete block masonry with different mix ratios are used in the experiments and the results show that the prediction model based on deep learning exhibits the advantages including higher precision, higher efficiency and higher generalization ability compared with the traditional neural network model, and could be considered as a new method for calculating the strength of recycled concrete.