دانلود رایگان مقاله تجسم عملکرد الگوریتم پیش بینی با سری زمانی به عنوان مثال فضاها

عنوان فارسی
تجسم عملکرد الگوریتم پیش بینی با استفاده از سری زمانی به عنوان مثال فضاها
عنوان انگلیسی
Visualising forecasting algorithm performance using time series instance spaces
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
14
سال انتشار
2017
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E3999
رشته های مرتبط با این مقاله
اقتصاد، مدیریت و مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
الگوریتم ها و محاسات
مجله
مجله بین المللی پیش بینی - International Journal of Forecasting
دانشگاه
دانشکده اقتصاد و مدیریت، دانشگاه Beihang، پکن، چین
کلمات کلیدی
M3-رقابت در تجسم سری های زمانی، نسل سری های زمانی، مقایسه پیش بینی الگوریتم
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


It is common practice to evaluate the strength of forecasting methods using collections of well-studied time series datasets, such as the M3 data. The question is, though, how diverse and challenging are these time series, and do they enable us to study the unique strengths and weaknesses of different forecasting methods? This paper proposes a visualisation method for collections of time series that enables a time series to be represented as a point in a two-dimensional instance space. The effectiveness of different forecasting methods across this space is easy to visualise, and the diversity of the time series in an existing collection can be assessed. Noting that the diversity of the M3 dataset has been questioned, this paper also proposes a method for generating new time series with controllable characteristics in order to fill in and spread out the instance space, making our generalisations of forecasting method performances as robust as possible. © 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

نتیجه گیری

5. Conclusions


We have represented a collection of time series as points in a feature space. This has allowed us to propose several interesting analysis tools that provide insights into large collections of time series. First, we can identify unusual time series which have very different combinations of features to other time series in the collection. We can also see clustering and other structures within the feature space, showing possible subgroups of time series and regions where there are many similar time series.


بدون دیدگاه