منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله روش لاگرانژی برآورد خطا و مشینگ تطبیقی برای مشکلات کشش تغییر شکل

عنوان فارسی
یک روش لاگرانژی به روز شده با برآورد خطا و مشینگ تطبیقی برای مشکلات کشش تغییر شکل بسیار بزرگ: مورد سه بعدی
عنوان انگلیسی
An updated Lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems: The three-dimensional case
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
18
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E765
رشته های مرتبط با این مقاله
مهندسی مکانیک
گرایش های مرتبط با این مقاله
طراحی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
گروه ریاضی و آمار، دانشگاه مانکتون، مانکتن، کانادا
کلمات کلیدی
روش اجزای محدود، تغییر شکل های بزرگ، مواد هایپرالاستیک، به روز رسانی از روش لاگرانژ، مشینگ تطبیقی؛ انتقال متغیرها
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Solving large deformation problems of hyperelastic materials by the finite element method is still a challenging problem due to the severe mesh distortion that occurs during the computation. In Leger et al. (2014), it was shown that combining an updated Lagrangian method with an efficient adaptive remeshing algorithm, an accurate transfer method for the deformation gradient tensor as well as an efficient continuation method leads to a very stable, efficient and accurate algorithm to solve two-dimensional very large deformation problems. In this paper, we show that this method can also be generalized to solve three-dimensional problems. A number of static problems will be presented and analyzed.

نتیجه گیری

5. Conclusion


In this work, we have presented a complete updated Lagrangian algorithm to solve three-dimensional large deformation elasticity problems. This algorithm is a generalization of the algorithm presented in [6] and includes key ingredients for its good performance, such as error estimation and adaptive remeshing, an accurate transfer method for the deformation gradient tensor as well as an efficient continuation method. Our adaptive remeshing not only leads to optimal meshes when the Hessian of the solution is indefinite, but also improves the accuracy of the numerical results. The numerical examples presented in this paper not only show the good accuracy of this method, but also its robustness in the case of complex large deformation problems. In practical applications, where accuracy and robustness is of utmost importance, this complete method has been very performant and has lead to better results. We also note that remeshing the initial configuration, which does not necessitate any transfer of variables (meaning that no loss of information results from this), has also shown to enhance the performance of the updated Lagrangian method.


بدون دیدگاه