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Abstract

Solving large deformation problems of hyperelastic materials by the finite element method is still a challenging problem due
to the severe mesh distortion that occurs during the computation. In Leger et al. (2014), it was shown that combining an updated
Lagrangian method with an efficient adaptive remeshing algorithm, an accurate transfer method for the deformation gradient tensor
as well as an efficient continuation method leads to a very stable, efficient and accurate algorithm to solve two-dimensional very
large deformation problems. In this paper, we show that this method can also be generalized to solve three-dimensional problems.
A number of static problems will be presented and analyzed.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive remeshing has proved to be a very efficient tool when dealing with distorted elements that appear in
the mesh during the simulation of large deformation problems. The most classical approach of adaptive remeshing
is based on the definition of a solution dependent metric (see [1,2]). Metric-based adaptation methods lead to good
results. However, for most of these methods, an accurate estimation of the Hessian matrix of the finite element solution
is needed, which is one of the difficulties of this approach. Recovering first order derivatives of a piecewise continuous
finite element solution is not an easy task, and the situation is even more difficult for second order derivatives. A new
approach, based on a hierarchical error indicator, was thus introduced by Bois et al. [3,4] in order to obtain a totally
general adaptation method which can be applied to all sort of partial differential equation (PDE) problems and for
finite element approximation of all degrees. This adaptation method leads to anisotropic meshes when the solution
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allows it and has two main objectives: control the error on the solution and avoid reversed elements in regions of
severe deformations.

In an updated Lagrangian context [5], remeshing intermediate configurations when distorted elements appear in the
mesh is key to attaining very large deformations. A good remeshing algorithm is thus important and it was shown in [6]
that the anisotropic mesh adaptation method developed by Bois et al. is a very helpful tool when mesh optimization
is needed. Not only does this method lead to optimal meshes when the Hessian of the solution is indefinite, but it also
improves the accuracy of the numerical results.

However, to pursue with the computation after a remeshing step, data transfer from the old mesh to the new one is
required and this is a very delicate issue. If the transfer is not done properly, accuracy can be seriously affected. In an
updated Lagrangian method, the deformation gradient tensor is updated at each increment in order to keep track of the
previous deformations. This variable, which has its values generally known only at the Gauss points, therefore needs
to be transferred to the new mesh as accurately as possible. Different techniques exist for the transfer of this variable
(diffuse approximation method [7], closest point technique [8], weighted average method [9], etc.), but it was shown
in [6] that the L2-projection in a cubic field (see [10] and [11]) leads to better results, not only in terms of accuracy
but also in terms of robustness.

To improve the robustness of the updated Lagrangian method, numerical continuation methods (see for example
[12–15]), where the load-factor becomes an additional unknown of the system in order to control the deformation of
the structure during the computation, have proved to be very powerful tools. Many continuation methods exist, but
in this work, the Moore–Penrose continuation method (see [16–18]) will be considered as it has shown to be very
efficient in the case of large deformation problems.

The combination of all these key ingredients (fully optimal anisotropic mesh adaptation method, cubic
L2-projection for the transfer of the deformation gradient tensor and the Moore–Penrose continuation method) led
to a very stable, efficient and accurate updated Lagrangian algorithm to solve two-dimensional large deformation
elasticity problems [6]. In this work, we will show that this same approach can be used to solve three-dimensional
problems. The paper is organized as follows. Section 2 is devoted to the updated Lagrangian variational formulation
of large deformation hyperelastic materials. Section 3 gives a brief description of the key ingredients necessary to
obtain an efficient updated Lagrangian algorithm while Section 4 shows numerical examples of the overall strategy in
the three-dimensional case. In this paper, we note that only static problems will be considered.

2. Theoretical developments

To describe a body undergoing large deformations using a Lagrangian framework [19], the most frequently used
formulations are the total Lagrangian formulation [20], which refers to the initial configuration, and the updated
Lagrangian formulation [5], which refers to the most recently calculated configuration. Both formulations are
mathematically equivalent, but the updated Lagrangian formulation tends to be more appropriate when solving more
complicated problems [6] (i.e. problems with strong singularities). In this work, an updated Lagrangian formulation
will therefore be considered.

Let Ω0 be the initial configuration and X the position of a material point in its configuration. The corresponding
position of this point in the deformed configuration Ω t will be denoted by x(X, t) and the displacement field u relating
X to x, which are measured with respect to the same fixed rectangular Cartesian coordinate system, will be given by
u(X, t) = x(X, t) − X (see [21] and [22]). Local deformation is measured by the deformation gradient tensor F,
which is defined by F =

∂x
∂X = I + ∇Xu where ∇Xu =

∂u
∂X is the displacement gradient. The Cauchy–Green and

Green–Lagrange tensors are defined as usual by C = F⊤
· F and E =

1
2 (C − I).

The stress tensors used to describe the internal forces acting within a deformable body are the first and second
Piola–Kirchoff stress tensors, denoted respectively by ΠΠΠ and S. These tensors are related to the Cauchy stress tensor
σ by the relation ΠΠΠ = F · S = Jσ · F−⊤, where J = det F is the Jacobian of the transformation from Ω0 to Ω t and
represents the local volume change.

2.1. Hyperelastic materials

Many models exist to describe hyperelastic materials, but in this work we will consider the Mooney–Rivlin
incompressible model as it is widely used in practice. For nearly incompressible hyperelastic materials, the
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incompressibility can be more readily enforced within the context of the finite element formulation, which is done by
adding a volumetric energy component U (J ) to the distortional component Ψ̂(C) (which is defined by a polynomial
in terms of the two first invariants J1 and J2 of Ĉ = I −1/3

3 C, where J1 = I1 I −1/3
3 and J2 = I2 I −2/3

3 ). The total strain
energy function Ψ(C) is therefore written as

Ψ(C) = Ψ̂(C) + U (J ) (1)

where U (J ) can simply be chosen as 1
2 k(J − 1)2. We note that the penalty number k enforces the incompressibility

and represents the bulk modulus. As stated in [21], the second Piola–Kirchhoff tensor for a material defined by (1)
can then be obtained in the standard manner by

S = 2
∂Ψ
∂C

= 2


∂Ψ̂
∂ J1

∂ J1

∂C
+

∂Ψ̂
∂ J2

∂ J2

∂C


+ 2k(J − 1)

∂ J

∂C
= S′

− pJC−1

with p = −k(J − 1).
In the case of the Mooney–Rivlin model, the total strain energy function is given by

Ψ = c1(J1 − 3) + c2(J2 − 3) +
1
2

k(J − 1)2

which leads to

S′
= 2c1 I −1/3

3


I −

1
3

I1C−1


+ 2c2 I −2/3
3


I1I − C −

2
3

I2C−1


. (2)

We note that I1, I2 and I3 are the invariants of C and are defined by I1 = tr C, I2 =
1
2


I1

2
− (C : C)


and

I3 = det C = J 2. We also note that the fourth-order elasticity tensor C is also derived from the potential energy
function Ψ as C = 4 ∂2Ψ

∂C2 .

2.2. Updated Lagrangian formulation

In a total Lagrangian formulation, the equilibrium equation is written in terms of the initial configuration Ω0:
−∇X · ΠΠΠ = r0 in Ω0

u = u0 on Γ 0
D

ΠΠΠ · N = P J (F−⊤
· N) on Γ 0

P

(3)

where Γ 0
D and Γ 0

P represent, respectively, the regions of the boundary of Ω0 on which Dirichlet and pressure load
boundary conditions are imposed. We note that N is the unit normal vector to Γ 0

P while P represents the value of the
pressure load.

The corresponding mixed variational formulation, which is a more appropriate choice in the case of incompress-
ibility, is given by

Ω0
S′

:


F⊤

· ∇Xw


dV −


Ω0

pJF−⊤
: ∇Xw dV =


Ω0

r0 · w dV +


Γ 0

P

Pw · (F−⊤
· N)J d A

Ω0
(J − 1)q dV +


Ω0

1
k

pq dV = 0

where w are finite element weighting functions that vanish on Γ 0
D and q are scalar weighting functions associated

with p, where p = −k(J − 1) as stated above. This formulation is entirely equivalent to the incremental formulation
described in [22].

In an updated Lagrangian formulation, the formulation refers to the most recently calculated configuration. By
denoting the deformed configuration at the end of the i th step (which is the same as the configuration at the beginning
of step (i + 1)) by Ω i and the coordinates in this configuration by Xi , it follows that:

φi→ j (Xi ) = X j = Xi + ui→ j
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u0→i = u0→1 + u1→2 + · · · + u(i−2)→(i−1) + u(i−1)→i ,

φ0→i = φ(i−1)→i ◦ φ(i−2)→(i−1) ◦ · · · ◦ φ1→2 ◦ φ0→1

and

F0→i = F(i−1)→i · F(i−2)→(i−1) · . . . · F1→2 · F0→1

where φi→ j is the transformation between Ω i and Ω j and ui→ j is the displacement between the two configurations

in consideration. As for the deformation gradient tensor Fi→ j , it is defined by (Fi→ j )mn =
∂(X j )m
∂(Xi )n

, where (X j )m is
the mth component of X j . The determinant of the deformation gradient tensor can therefore be expressed as:

J0→i = J(i−1)→i J(i−2)→(i−1) . . . J1→2 J0→1.

The updated Lagrangian formulation can be established, as shown in [6], by assuming we want to calculate the
displacement between an initial configuration Ω0 and the configuration at the end of the second step Ω2, but by
taking the intermediate configuration Ω1 as the reference configuration for the second step. Starting from a total
Lagrangian formulation expressed in terms of the notation that we have just introduced and using the fact that
∇X i w = ∇X j w · Fi→ j , it can be shown that the mixed formulation in an updated Lagrangian context is given by:

R1 =


Ω1

S′ (C0→2) :


F⊤

1→2 · ∇X1w


d X1 −


Ω1

pJ1→2F−⊤

1→2 : ∇X1w d X1 −


Ω1

r1 · w d X1

−


Γ 1

P

Pw · (F−⊤

1→2 · N1)J1→2 d A1

R2 =


Ω1


−(J1→2 − J−1

0→1) −
1
k

pJ−1
0→1


q d X1

where r1 = J−1
0→1r0. We also note thatS′ (C0→2) = J−1

0→1F0→1 · S′ (C0→2) · F⊤

0→1

with

C0→2 = F⊤

0→1 · C1→2 · F0→1. (4)

The linearized system is therefore given by:

∂ R1

∂u
· δu −


Ω1

δp J1→2F−⊤

1→2 : ∇X1w d X1 = −R1

−


Ω1

q J1→2F−⊤

1→2 : ∇X1δu d X1 −


Ω1

1
k
δpq J−1

0→1 d X1 = −R2 (5)

with

∂ R1

∂u
· δu =


Ω1

S (C0→2) :


∇

⊤
X1

(δu) · ∇X1w


d X1

+


Ω1

C (C0→2) :


F⊤

1→2 · ∇X1 (δu)


:


F⊤

1→2 · ∇X1w


d X1

−


Γ 1

P

Pw ·


F−⊤

1→2 : ∇X1 (δu)


·


F−⊤

1→2 · N1


J1→2 d A1

+


Γ 1

P

Pw ·


F−⊤

1→2 ·

∇X1δu

⊤
· F−⊤

1→2


· N1


J1→2 d A1

whereS (C0→2) = J−1
0→1F0→1 · S (C0→2) · F⊤

0→1. As for the tensorC (C0→2), its components are given by:C (C0→2)


mnop = J−1
0→1 (C (C0→2))i jkl (F0→1)mi (F0→1)nj (F0→1)ok (F0→1)pl . (6)
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As can be seen, this updated Lagrangian formulation is based on the last converged state, which is different from
the more classical formulation based on the current configuration as described in [22]. The two updated Lagrangian
formulations are obviously mathematically equivalent to the total Lagrangian one, but the formulation presented in
this work is preferred due to our error estimation and adaptation method that will be described in the next section.
The algorithm used to solve large deformation problems based on this updated Lagrangian formulation can again be
found in [6].

3. Key ingredients

The updated Lagrangian method used in this work will combine three key ingredients: a fully optimal anisotropic
mesh adaptation method, a cubic L2-projection for the transfer of the deformation gradient tensor and the
Moore–Penrose continuation method. The following briefly describes each of these ingredients.

3.1. Mesh adaptation based on a hierarchical error indicator

The hierarchical error indicator used in this work, which was first introduced by Bois et al. [3,4], is based on the
construction of a more accurate approximation of the analytic solution of our PDE problem. Let u be the analytic
solution of our problem (which in our specific case will represent the unknown displacement field) and let us assume
that u(k)

h is a finite element approximation of degree k of u. Our objective is now to estimate the error ∥u − u(k)
h ∥ in

some appropriate norm. The idea behind this approach is to construct a more accurate approximation û(k+1)
h of degree

k + 1 of u, which can then be used to easily approximate the error by the relation

∥u − u(k)
h ∥ ≤ ∥u − û(k+1)

h ∥ + ∥û(k+1)
h − u(k)

h ∥ ≃ ∥û(k+1)
h − u(k)

h ∥. (7)

The construction of û(k+1)
h not only requires the finite element solution u(k)

h , but also the reconstruction of a

piecewise continuous Lagrange approximation of degree k of its gradient (denoted g(k)
h ). We note that simply taking

the derivative of u(k)
h would lead to a discontinuous approximation and it is well known that such an approximation is

not very accurate. Different methods exist to obtain an accurate reconstruction of the gradient. Zienkiewicz and Zhu
[23,24] were among the first to introduce such methods, but Zhang and Naga [25] introduced a more accurate method
which was shown to be superconvergent on a number of finite difference meshes. This last method will therefore be
used in this work to obtain an accurate approximation g(k)

h of the gradient of our finite element solution.

The finite element approximation û(k+1)
h is built on an element by element basis. In fact, on each element of the

mesh, we look for an approximation of the form:

û(k+1)
h = u(k)

h + c(k+1)
h (8)

where c(k+1)
h can be seen as a correction of degree k+1 of the finite element solution u(k)

h . In the simplest case (k = 1),

u(1)
h would be a piecewise linear approximation with degrees of freedom associated to the vertices of the triangle while

c(2)
h would be a quadratic correction with degrees of freedom associated to mid-side nodes. The general definition of

c(k+1)
h is based on the use of hierarchical Lagrange finite element basis as described in [4].

To obtain the unknown correction c(k+1)
h , which is needed for the construction of û(k+1)

h , we simply use the fact

that since û(k+1)
h is an approximation of u and g(k)

h is an approximation of its gradient ∇u, then the different partial

derivatives of order k + 1 of û(k+1)
h should coincide with the appropriate partial derivative of order k of one of the

components of g(k)
h . On each element K of the mesh, the unknown correction c(k+1)

h can thus be obtained by solving
a small linear system and the L2-norm of the error can be approximated by:

∥u − u(k)
h ∥0,K ≃ ∥û(k+1)

h − u(k)
h ∥0,K = ∥c(k+1)

h ∥0,K .

The details of this procedure can again be found in [4].
With this error indicator, we can then modify the mesh in order to control the error on the finite element solution.

The global strategy is to try to reach a given error level in L2-norm throughout the domain, but we will also try
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Fig. 1. Illustration of how the proposed adaptive remeshing technique improves the accuracy of the solution. Convergence curves in L2-norm:
comparison between regular and adapted meshes.

to achieve an equidistribution of the error by minimizing the H1-seminorm of the error. To obtain the new mesh,
only local operators are used. These local operators are: edge division, node elimination, edge swapping and node
displacement. The first two are used to reach the given error level while the last two are used to equidistribute the error
and improve the quality of the elements. These local operators also allow for anisotropic meshes where the solution
allows it.

To show that this mesh adaptation method is well adapted to solve three-dimensional problems, let us use
the method of manufactured solutions as described in [26,27]. For this example, the function u = [ln(1 −

40X/50)/1000, ln(1 − 40Y/50)/1000, Z/25] will be chosen as the analytical solution of the total displacement,
where X , Y and Z are the coordinates on Ω0

= [0, 1]
3. We will solve using the updated Lagrangian method described

in Section 2.2 and use k = 100, c1 = 1 and c2 = 2 as parameters for the Mooney–Rivlin model. A Dirichlet boundary
condition of u = [ln(1 − 40X/50)/5000, ln(1 − 40Y/50)/5000, Z/125] will be imposed on all the mesh boundaries
for each of the five updated Lagrangian steps and P2–P1 elements (quadratic discretization for the displacement and
linear for the pressure also known as the Taylor–Hood element [28]) will be used to generate the convergence curves.
The reference curve will be obtained without remeshing and will be compared with the convergence curve obtained
when using the proposed adaptive remeshing method on the initial configuration.

Fig. 1 clearly shows that for a given number of degrees of freedom (DoFs), the error is lower in the case of our
proposed adaptive remeshing technique. We can also see that the mesh adaptation maintains an optimal convergence
rate. The hierarchical mesh adaptation method was also compared with a metric based adaptation method (see [1,29])
and the results are shown in Fig. 2. As can be seen, the proposed hierarchical adaptive remeshing technique leads to
more accurate results, which is another reason why this method is preferred.

3.2. Data transfer

One of the most important variable to transfer from the old mesh to the new one in an updated Lagrangian context
is the deformation gradient tensor, denoted as F0→1 in our algorithm, as it is needed to keep track of the previous
deformations. This variable is known only at the Gauss points of the actual mesh and needs to be transferred to the
Gauss points of the new mesh as accurately as possible. In [6], we considered three different techniques to achieve
this goal: closest point technique (see [8]), weighted average method with different weight functions (see [9]) and the
L2-projection method (see [10] and [11]) in different degree fields (i.e. L2-projection in linear, quadratic and cubic
field). Amongst the methods studied, the L2-projection in a cubic field not only led to the most accurate results, but
also proved to be the most robust. The L2-projection method consists of the following four steps :

1. Extrapolate the variable from the Gauss points to the nodes of the old mesh by the least-squares method.
2. Locate the nodes of the new mesh with respect to the local coordinate systems of the elements of the old mesh.
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Fig. 2. Convergence curves in L2-norm: comparison between our hierarchical mesh adaptation method and a metric based adaptation method.

3. Calculate the value of the variable at the nodes of the new mesh by direct interpolation.
4. Obtain the values of the variable at the Gauss points of the new mesh by employing the shape functions of the new

mesh.

In step 1, the least-squares method can be applied globally on the entire domain Ω [30–32], locally on a patch of
elements [23,33,34] or even locally element-wise [30]. In this work, we will again study the effect of using different
order smoothing shape functions in the global least-squares method to solve large deformation hyperelastic problems,
but this time in the three-dimensional case.

Let Z∗ denote a variable with its values only known at the Gauss points. In the global case, the projection method
requires solving the following minimization problem

min
Z∈V k

h

1
2


Ω
(Z − Z∗)2 dΩ ⇔


Ω

Z q dΩ =


Ω

Z∗ q dΩ , ∀q ∈ V k
h (9)

where V k
h is the finite element space of continuous piecewise polynomials of degree k and Ω is the configuration of

the old mesh (of the last converged state). This is equivalent to an L2-projection of Z∗ onto the finite element function
space V k

h where q are the test functions in V k
h .

We note that the computational cost of this projection step is minimal even in the three-dimensional case as the
resolution of the corresponding linear systems is done by a preconditioned conjugate gradient method. Also, we note
that in the specific case of the deformation gradient tensor, this projection is performed component wise noticing that
the global (mass) matrix is the same for all components.

To show that the L2-projection method in a cubic field also leads to the best results in the three-dimensional case,
let us consider three different test problems.

3.2.1. Horizontal elastic beam problem
Let us first consider an horizontal beam of dimension 10 × 1 × 1 fixed at its left side on which we will apply a total

pressure load of P = 0.003 on the top edge. The pressure will be applied gradually during three updated Lagrangian
steps of 0.001, and then released gradually during the following three steps. At the end of the sixth step, the forces
will no longer be applied and the beam should return to its original configuration. The total displacement should
therefore be null. However, since adaptive remeshing will be completed at the end of each step, which means that the
deformation gradient tensor will be transferred a total of five times (no remeshing will be done at the end of the sixth
step), the best we can hope for is a good approximation of the initial configuration. Our goal will therefore be to find
the transfer method that minimizes the total displacement. We note that the initial configuration will be remeshed in
order to take into consideration, from the beginning, the various transitions in the solution and to improve the accuracy
of the transfers of the deformation gradient tensor in subsequent remeshing steps. Remeshing the initial configuration
does not necessitate any transfer of variables, which means that no loss of information will result from this.
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Table 1

Horizontal elastic beam problem: L2-norm of the total displacement after unloading divided by the volume of the
initial geometry (comparison of the different transfer techniques).

L2-projection L2-projection L2-projection CPT WAM
k = 1 k = 2 k = 3 (1/d4)

4.194 × 10−3 3.360 × 10−4 7.500 × 10−5 3.697 × 10−3 3.460 × 10−3

Fig. 3. (a) Initial adapted mesh. (b) Deformed mesh at P = 0.003.

(a) Hierarchical remeshing. (b) Metric based remeshing.

Fig. 4. Horizontal elastic beam problem: initial meshes for both remeshing methods.

Fig. 3 shows the adapted mesh of the initial geometry, which has 5447 nodes and 3233 elements, as well as the
deformed mesh after the third step (at P = 0.003) in the case of a cubic L2-projection. We note that P2–P1 elements
were used for the computation and that the parameters for the Mooney–Rivlin model were chosen as k = 100,
c1 = 1.5 and c2 = 0.5. We also note that the Taylor–Hood element satisfies the inf–sup condition (also known as the
Babuska–Brezzi condition) and can therefore be used in the case of incompressible materials (see [28] and [35]).

Table 1 compares the L2-projection method in different degree fields (linear, quadratic and cubic) with the
closest point technique (CPT) and the weighted average method (WAM) with weight functions 1/d4 by giving the
normalized L2-norm of the total displacement for each of the methods. As can be seen, the cubic L2-projection is
approximately fifty times better than the linear L2-projection, the closest point technique and the weighted average
method, and approximately four times better than the quadratic L2-projection. This test clearly illustrates the better
performance of the cubic L2-projection and justifies why this method is used in our complete updated Lagrangian
method.

A similar test was also done to compare the difference in accuracy when using our proposed hierarchical adaptive
remeshing technique versus a metric based remeshing algorithm in the case of a cubic L2-projection method. For this
test, a total pressure load of P = 0.002 was applied in the first updated Lagrangian step and was released during the
second step. After the first step (at P = 0.002), the configuration was remeshed and the deformation gradient tensor
was transferred (using a cubic L2-projection). We note that, in both cases, the initial configuration was also remeshed.
Table 2 compares the normalized L2-norm of the total displacement for each of the remeshing methods and shows that
the hierarchical adaptive remeshing method leads to more accurate results even when the transfer of the deformation
gradient tensor is necessary (and even for a mesh with a slightly lower number of DoFs). Fig. 4 compares the initial
meshes for both remeshing methods.
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Table 2

Horizontal elastic beam problem: L2-norm of the total displacement after unloading
divided by the volume of the initial geometry (comparison of the different remeshing
techniques).

# DoFs Error

Metric based remeshing 20 198 2.060 × 10−4

Hierarchical remeshing 18 659 1.440 × 10−4

Table 3

Indentation problem with pressure load: L2-norm of the total displacement after unloading divided by the volume of
the initial geometry (comparison of the different transfer techniques).

L2-projection L2-projection L2-projection CPT WAM
k = 1 k = 2 k = 3 (1/d4)

3.305 × 10−5 1.188 × 10−5 4.855 × 10−6 3.700 × 10−5 1.455 × 10−4

Fig. 5. Indentation problem with pressure load: uniform initial mesh.

3.2.2. Indentation problem with pressure load
The previous example demonstrated that the cubic L2-projection method works well in the case of homogeneous

deformations. To show that it also works well when dealing with more difficult problems, let us consider a rectangular
prism of dimension 2 × 1 × 1 on which a total pressure load of P = 6 will be applied on the left part of the top edge
(see Fig. 5). The two different types of boundary conditions on the top edge will lead to a strong singularity at the
interface, leading to a more difficult problem to solve than the horizontal elastic beam problem. The pressure will be
applied gradually during six updated Lagrangian steps of ∆P = 1, and then released gradually during the following
six steps. Theoretically, the total displacement should again be null. The initial configuration will be remeshed to take
into consideration the various transitions in the solution from the start and subsequent remeshing steps will be done
at every three updated Lagrangian steps. A total of five remeshing steps will therefore be done during the simulation
(including the initial remeshing).

Fig. 6 shows the deformed mesh after the sixth step (at P = 6) in the case of a cubic L2-projection. We note
that P2–P1 elements were again used for the computation and that the parameters for the Mooney–Rivlin model were
chosen as k = 1000, c1 = 1.5 and c2 = 0.5. Table 3 compares the different transfer techniques and again illustrates
the better performance of the cubic L2-projection.

A more challenging problem would now be to consider a heterogeneous problem with a strong material
discontinuity. Many authors have studied the effect of error estimation on these types of problems. We refer the
reader to [36–38] for discussions on this topic.

To test the performance of the cubic L2-projection as well as our mesh adaptation method in such a situation, let
us consider again the prism of Fig. 5, but this time, where a prism of dimension 0.5 × 0.25 × 0.25 will be completely
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Fig. 6. Indentation problem with pressure load: deformed configuration after the sixth step (P = 6).

Fig. 7. 2D heterogeneous problem with a strong material discontinuity: initial adapted mesh.

Table 4

Heterogeneous problem in 2D: L2-norm of the total displacement after unloading divided by the area of the initial
geometry (comparison of the different transfer techniques).

L2-projection L2-projection L2-projection CPT WAM
k = 1 k = 2 k = 3 (1/d4)

2.104 × 10−4 4.374 × 10−5 1.008 × 10−5 1.035 × 10−4 9.701 × 10−5

immersed inside the other prism. The inner prism will consist of a stiff region which will be represented by higher
values of parameters in the Mooney–Rivlin model: k = 1000, c1 = 15 and c2 = 5. P2–P1 elements will again be used
for the computation and a pressure load will be applied on the left part of the top edge following the same procedure
as in the previous example.

To better understand the difficulty of this problem and to better illustrate the effect of remeshing on these types of
problems, let us first consider the two-dimensional case where a square of dimension 1 × 1 is completely immersed
inside a square of dimension 4 × 4. Fig. 7 shows the adapted mesh on the initial geometry and illustrates how the
remeshing procedure has detected the material discontinuity and how it has added elements in these regions in order
to improve the accuracy of the solution. Fig. 8(a) shows the deformed configuration at P = 6 in the case of a cubic
L2-projection, while Fig. 8(b) shows the configuration once the load has been completely released. As can be seen
in Table 4, even in the case of a more challenging problem, the cubic L2-projection still leads to the better results
(it is approximately four times better than the L2-projection in a quadratic field, ten times better than the weighted
average method and closest point technique and twenty times better than the L2-projection in a linear field). Our mesh
adaptation method also performs very well.

The same comparisons were made in the three-dimensional case, and once again, the L2-projection in a cubic field
led to the most accurate result. The results can be seen in Table 5.

To consider an even more challenging problem, let us now consider the case where a much thinner stiff
reinforcement is immersed inside the soft region, which will lead to an even stronger material discontinuity. In the
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(a) Deformed configuration
at P = 6.

(b) Configuration after
releasing the load.

Fig. 8. 2D heterogeneous problem with a strong material discontinuity: evolution of the configuration.

(a) Initial adapted mesh. (b) Deformed
configuration at P = 6.

Fig. 9. 2D heterogeneous problem with a thinner stiff reinforcement: evolution of the configuration.

Table 5

Heterogeneous problem in 3D: L2-norm of the total displacement after unloading divided by the volume of the initial
geometry (comparison of the different transfer techniques).

L2-projection L2-projection L2-projection CPT WAM
k = 1 k = 2 k = 3 (1/d4)

8.052 × 10−5 2.054 × 10−5 1.234 × 10−5 5.577 × 10−5 6.485 × 10−5

Table 6

Heterogeneous problem in 2D with a thinner stiff reinforcement: L2-norm of the total displacement after unloading
divided by the area of the initial geometry (comparison of the different transfer techniques).

L2-projection L2-projection L2-projection CPT WAM
k = 1 k = 2 k = 3 (1/d4)

1.485 × 10−4 4.818 × 10−5 2.480 × 10−5 1.083 × 10−4 8.627 × 10−5

two-dimensional case, a rectangle of dimension 1 × 0.01 will therefore be completely immersed inside a square of
dimension 4×4 and the inner stiff region will be represented by even higher values of parameters in the Mooney–Rivlin
model: k = 1000, c1 = 750 and c2 = 250. Fig. 9(a) shows the adapted mesh on the initial geometry and shows again
how the remeshing procedure has added elements near the material discontinuity, while Fig. 9(b) shows the deformed
configuration at P = 6 in the case of a cubic L2-projection. As can be seen in Table 6, the cubic L2-projection
still leads to the better results in this very challenging heterogeneous problem. We note that very similar results were
obtained in the three-dimensional case.
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Table 7

Large rotation problem: L2-norm of the error on p and σ (comparison of the different transfer techniques).

L2-projection L2-projection L2-projection CPT WAM
k = 1 k = 2 k = 3 (1/d4)

p 3.779 × 10−2 1.416 × 10−3 3.614 × 10−4 3.825 × 10−3 1.820 × 10−2

σ 6.560 × 10−2 2.490 × 10−3 8.808 × 10−4 6.757 × 10−2 4.044 × 10−2

σ (%) 1.13% 0.04% 0.02% 1.16% 0.69%

3.2.3. Large rotation problem
To test the efficiency of our proposed approach in the case of large rotation, let us use the method of manufactured

solutions and consider the following transformation:

x = X cos(βZ) − Y sin(βZ)

y = X sin(βZ) + Y cos(βZ)

z = Z

where X , Y and Z are the coordinates on the initial configuration Ω0 and x , y and z are the coordinates on the
deformed configuration Ω t . The solution u is therefore given by u = [X cos(βZ) − Y sin(βZ) − X, X sin(βZ) +

Y cos(βZ)−Y, 0]. As analytic expressions are known for the pressure p (which is defined as p = −k(J −1)) and the
Cauchy stress tensor σ , the error on each of these quantities will be calculated on Ω t at the end of the simulation (since
they are defined on that configuration). Evidently, analytic expressions are also known for the displacement u and the
deformation gradient tensor F. However, since these quantities are defined on Ω0, the displacement would need to
be subtracted from the coordinates in the current configuration to obtain the coordinates in the initial configuration
before computing the L2-norms. As remeshing is done a few times during the simulation, this would not lead to the
exact initial configuration and the comparisons would not be accurate. The comparisons will therefore only be done
on p and σ .

For this comparison, β will be chosen as π
4 and a Mooney–Rivlin model with parameters k = 100, c1 = 1 and

c2 = 2 will be used on a cube of dimension 1 × 1 × 1. The simulation will be completed in four updated Lagrangian
steps and remeshing will be done on the initial configuration as well as after each of the updated Lagrangian steps.
Table 7 compares the errors for the different transfer methods. As can be seen, the L2-projection in a cubic field
performs, again, much better than the other transfer methods. The table also shows the relative error in L2-norm for
the Cauchy stress tensor in order to illustrate the magnitude of the errors. We note that the relative error was not
calculated for the pressure as the true value is zero.

3.3. Moore–Penrose continuation method

Numerical continuation methods are very powerful and efficient tools when it comes to solving nonlinear systems
of equations. They have increased in popularity during the years and have provided important contributions toward the
numerical solution of highly nonlinear problems which are hard to obtain otherwise. Predictor–corrector continuation
methods are the most frequently used in practice. In this work, the Moore–Penrose continuation method will be used
to improve the robustness of our updated Lagrangian algorithm. This method, which introduces a load parameter λ to
control the deformation of the structure during the computation, can be described as follows.

In the general case, the system of nonlinear equations to solve can be written implicitly as

F(x) = 0 (10)

with F : RN+1
→ RN a smooth function. The vector of unknowns x consists of the N degrees of freedom plus the

loading parameter λ.
Assuming a point x (i)

∈ RN+1 on the solution curve F(x) = 0 has been found, the first step consists of calculating
a tangent vector v(i)

∈ RN+1 at this point satisfying the property

Fx (x (i))v(i)
= 0. (11)
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Fig. 10. Correction algorithm for the Moore–Penrose continuation method.

The tangent vector is then used to calculate the next point x (i+1)
∈ RN+1 on the solution curve. We begin by

completing a prediction step in the tangent direction:

X0
= x (i)

+ hiv
(i) (12)

and then a correction is made by searching the point x (i+1) solution of the system:
F(x) = 0
v⊤(x − X0) = 0

where v ∈ RN+1 satisfies Fx (x)v = 0. We note that the step size in the tangent direction, hi , can be controlled based
on the number of iterations to convergence or can even be determined by a line search algorithm.

By linearizing the system around X0 and exploiting the Moore–Penrose pseudoinverse A+ of a matrix A, the
quasi-Newton iterations (also called Moore–Penrose corrections) are given by

X k+1
= X k

− F+
x (X k)F(X k), k = 0, 1, 2, . . . (13)

where V k
∈ RN+1 satisfies the relation Fx (X k)V k

= 0. Since V k is unknown, it is approximated by a vector V k

satisfying

Fx (X k−1)V k
= 0, V 0

= v(i). (14)

The numerical algorithm for the Moore–Penrose method can be found in [17]. The correction algorithm is
illustrated in Fig. 10.

4. Numerical results

This section will show how our complete updated Lagrangian method, which combines error estimation, adaptive
remeshing, the cubic L2-projection transfer method for the transfer of the deformation gradient tensor and the
Moore–Penrose continuation algorithm, can solve efficiently three-dimensional large deformation elasticity problems.
In Section 3.2, we have shown that the cubic L2-projection transfer method leads to the most accurate results. In this
section, we will show that, by including it in our complete updated Lagrangian method, it also enables us to reach
high levels of deformations.

4.1. Horizontal elastic beam

As a first example, let us consider the rectangular elastic beam of dimension 10 × 1 × 1 of Fig. 11(a) on which we
will apply a pressure load P on the top edge. The beam will be fixed at both extremities and the applied force will
be controlled by the Moore–Penrose continuation algorithm. We note that remeshing steps will be completed when
necessary (i.e. when convergence problems appear) in order to attain a sufficiently high level of deformation.

As usual, the initial configuration will be remeshed in order to take into consideration the different variations of
the solution from the start. Using P2 − P1 elements and k = 100, c1 = 1.5 and c2 = 0.5 as parameters for the
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(a) Before initial remeshing. (b) After initial remeshing.

Fig. 11. Horizontal elastic beam: initial configuration.

Fig. 12. Horizontal elastic beam: final deformed configuration (P = 0.47).

Fig. 13. Horizontal elastic beam in the case of one fixed extremity: initial adapted mesh.

(a) P = 0.002. (b) P = 0.006. (c)
P = 0.014.

(d) P = 0.027.

Fig. 14. Horizontal elastic beam in the case of one fixed extremity: evolution of the deformation.

Mooney–Rivlin model, the initial remeshing step produces the mesh illustrated in Fig. 11(b), which has 24,566 nodes
and 15,932 elements. As can be seen, the elements in the mesh are concentrated near both extremities of the beam,
where it is fixed and where large changes appear in the solution gradient. This initial mesh is then used by our complete
updated Lagrangian method. Fig. 12 illustrates the final deformed configuration of the simulation where a total load
of P = 0.47 has been applied (corresponding to a maximum principal stretch of approximately 21.2). Considering
that this is an extremely difficult problem to solve due to the strong singularities that appear at both ends of the beam,
the level of deformation attained is very high.

A similar test can also be done by only fixing one of the extremities. In this case, the remeshing algorithm produces
the initial mesh of Fig. 13, where this time the majority of the elements are concentrated near the left side (i.e. near
the extremity that is fixed). By applying a pressure load P on the top edge of the beam (as in the first example) and
by remeshing when necessary, a very high level of deformation, corresponding to a maximum principal stretch of
approximately 10.1, can be attained. Fig. 14 illustrates the evolution of the beam during the simulation and confirms
the last statement.
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Fig. 15. Indentation problem with pressure load: adapted initial mesh.

Fig. 16. Indentation problem with pressure load: final deformed mesh (P = 202.57).

4.2. Indentation problem with pressure load

Let us now consider the rectangular prism of Fig. 5 on which a pressure load P will again be applied on the left
part of the top edge. Fig. 15 shows the adapted initial mesh (which will be used for the simulation). As can be seen,
many elements have been added in the transition zone separating the two different types of limit conditions (pressure
load on left and Neumann on right).

Using P2 − P1 elements and the values k = 100, c1 = 1.5 and c2 = 0.5 for the Mooney–Rivlin model, we are
able to attain very large deformations (maximum principal stretch of approximately 232.3). Fig. 16 shows the final
deformed configuration where a total pressure load of P = 202.57 has been applied.

To complexify this problem, we can consider the same initial configuration, but where this time the top edge will be
divided into three parts in order to apply the pressure load on the middle part. Two transition zones of limit conditions
will therefore be created on the top edge, which will lead to a much more difficult problem to solve. The key to
attaining very large deformations in this example is to remesh the initial configuration in order to detect the singular
regions from the start. Fig. 17 illustrates the adapted initial mesh and shows that the remeshing algorithm detects both
transition zones and concentrates the majority of the elements in these regions in order to better capture the solution.

By controlling the deformation with the Moore–Penrose continuation algorithm and by remeshing the configuration
twice during the simulation, we are able to achieve a total pressure load of P = 199.64 (which leads to a maximum
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Fig. 17. Indentation problem with pressure load on the middle part of the top edge: adapted initial mesh.

(a) P = 7.91. (b) P = 64.21.

(c) P = 101.17. (d) P = 199.64.

Fig. 18. Indentation problem with pressure load on the middle part of the top edge: evolution of the deformation.
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principal stretch of approximately 171.2). Fig. 18 illustrates the evolution of the mesh during the simulation as well
as the final deformed configuration.

5. Conclusion

In this work, we have presented a complete updated Lagrangian algorithm to solve three-dimensional large
deformation elasticity problems. This algorithm is a generalization of the algorithm presented in [6] and includes key
ingredients for its good performance, such as error estimation and adaptive remeshing, an accurate transfer method
for the deformation gradient tensor as well as an efficient continuation method. Our adaptive remeshing not only leads
to optimal meshes when the Hessian of the solution is indefinite, but also improves the accuracy of the numerical
results. The numerical examples presented in this paper not only show the good accuracy of this method, but also
its robustness in the case of complex large deformation problems. In practical applications, where accuracy and
robustness is of utmost importance, this complete method has been very performant and has lead to better results.
We also note that remeshing the initial configuration, which does not necessitate any transfer of variables (meaning
that no loss of information results from this), has also shown to enhance the performance of the updated Lagrangian
method.
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