منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی پیش بینی رده زمانی با استفاده از شبکه بیزی پویا - الزویر 2017

عنوان فارسی
پیش بینی رده زمانی با استفاده از شبکه بیزی پویا
عنوان انگلیسی
Time series prediction using dynamic Bayesian network
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2017
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E6640
رشته های مرتبط با این مقاله
فناوری اطلاعات، برق
گرایش های مرتبط با این مقاله
شبکه های کامپیوتری
مجله
اپتیک - Optik
دانشگاه
Department of Electrical and Inforamtion Engineering - Xi’an Technological University - Xi’an
کلمات کلیدی
پیش بینی سری، زمانی شبکه دولتی اکو، KFM ،DBN
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Time series prediction is a challenging research topic, especially for multi-step-ahead prediction. In this paper, a novel multi-step-ahead time series prediction model is proposed based on combination of the Kalman filtering model (KFM) and the echo neural networks (ESN). Recently, the studies demonstrate the ESN model is a promising strategy for multistep-ahead time series prediction, at the same time, the KFM is a recursion-based sequence information processing approach, which has been used effectively for prediction, filtering and smooth of time series data. In this paper, we consider to use the recursion-based KFM to enhance performance of the ESN-based direct prediction model. A novel graph model named the E-KFM that generated from combination of the ESN and the KFM is developed to predict multi-step-ahead time series data. The simulation and comparison results show that the proposed model is more effectiveness and robustness.

نتیجه گیری

4. Conclusions


In this paper, a multi-step-ahead time series prediction models that combine ESN with the KFM is proposed. Our contribution can be described as: (1) We propose a novel graph-based time series prediction model named the E-KFM,the model combines the neural network and Bayesian inference together effectively, and uses recursion-based method to predict multi-step-ahead time series data. (2) Based on some theories, such as Bayesian rules, dynamic Bayesian networks and phase space reconstruction, the probability-based recursion calculation structure is presented to obtain the higher accuracy of multi-step-ahead prediction. Experimental results show that the E-KFM model has better performance than some existing algorithms.


بدون دیدگاه