منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله روش گالرکین ناپیوسته چند مقیاسی طیفی برای مسایل مرتبه دوم بیضوی

عنوان فارسی
روش گالرکین ناپیوسته چند مقیاسی طیفی برای مسایل مرتبه دوم بیضوی
عنوان انگلیسی
A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
14
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E781
رشته های مرتبط با این مقاله
مهندسی مکانیک و ریاضی
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
گروه ریاضی، دانشگاه تگزاس A & M، کالج استیشن، ایالات متحده آمریکا
کلمات کلیدی
روش المان محدود چند مقیاسی، گالرکین ناپیوسته، تابع پایه طیفی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method. Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study the performance of the proposed method on a representative number of numerical examples.

نتیجه گیری

5. Conclusion


In this paper, we propose spectral multiscale finite element methods for second order elliptic equations in the framework of the hybridizable discontinuous Galerkin finite element method. We propose several finite element spaces for the numerical traces. The main idea of the proposed method is to construct a low dimensional trace space MH . In the paper, we present a general framework for defining trace spaces, which consists of three steps: (1) a partition of the coarse skeleton; (2) a construction of a local snapshot space; (3) a construction of the offline space and consequently a construction of the numerical trace space. Within this framework, we propose and test two classes of coarse spaces. The first class uses the boundaries of the coarse-grid subdomain to construct trace space, while the second class constructs the traces on the faces that are strictly within coarse blocks. In this regard, the second approach uses an oversampling technique where the information in larger domains is used in constructing multiscale basis functions. The presented numerical results for both methods show that one can achieve a good accuracy with a few degrees of freedom along each edge and the approaches that use oversampling provide better accuracy. In our future work, we plan to present detailed error analysis.


بدون دیدگاه