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Abstract

We design a multiscale model reduction framework within the hybridizable discontinuous Galerkin finite element method.
Our approach uses local snapshot spaces and local spectral decomposition following the concept of Generalized Multiscale Finite
Element Methods. We propose several multiscale finite element spaces on the coarse edges that provide a reduced dimensional
approximation for numerical traces within the HDG framework. We provide a general framework for systematic construction
of multiscale trace spaces. Using local snapshots, we avoid high dimensional representation of trace spaces and use some local
features of the solution space in constructing a low dimensional trace space. We investigate the solvability and numerically study
the performance of the proposed method on a representative number of numerical examples.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we propose a novel hybridized discontinuous Galerkin multiscale finite element method for flows in
highly heterogeneous porous media. We consider the second-order elliptic differential equation

−∇ · (κ(x)∇u) = f (x) in Ω , (1)

where Ω is a bounded polyhedral domain in Rn, n = 2, 3. We assume that f ∈ L2(Ω) and the coefficient κ(x) ≥

κ0 > 0 represents the permeability of a highly heterogeneous porous media with multiple scales and high contrast
(the ratio between the maximum and minimum values of κ). Such problems appear in many industrial, scientific,
and environmental applications. Resolving all scales requires very fine meshes and this makes the corresponding
algebraic problem (arising from the finite element, finite volume, or mixed FEM approximations) a challenging and
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often prohibitively expensive task. This necessitates the use of reduced-order methods or specialized techniques for
solving the algebraic system, e.g. multigrid (e.g., [1,2]), multilevel methods (e.g., [3,4]), and/or domain decomposition
techniques (e.g., [5–10]).

More recently, new classes of reduced-order methods have been introduced and used in various applications. These
include Galerkin multiscale finite element method (e.g., [11–16]), mixed multiscale finite element methods (e.g.,
[17–20]), the multiscale finite volume method (see, e.g., [21]), mortar multiscale methods (see e.g., [22,23]), and
variational multiscale methods (see e.g., [24]). In this paper, we use the Generalized Multiscale Finite Element [25]
concept to construct a local reduced-order approximation for the solution space. In particular, the local snapshot
functions and spectral decomposition of the snapshot space are constructed to approximate the solution in each coarse
patch. The multiscale approach allows bringing the local properties of the solution into a global coarse-grid problem
in a systematic way that substantially reduces the number of coupled degrees of freedom in the algebraic system. The
local snapshot solutions are computed separately (possibly in parallel or off-line) on each coarse block. In general,
these solutions are discontinuous along the coarse grid interfaces and, consequently, robust discontinuous Galerkin
approaches are needed.

One of the earlier efficient mixed finite element methods on multi-block grids was devised by Mary Wheeler
and her co-authors in [26] by using the framework of domain decomposition method and mortaring technique.
Mortaring technique (see, e.g. [27]) was introduced to accommodate approximations on subdomains that could be
meshed independently and use non-conforming finite element spaces. This technique introduces an auxiliary space
on each subdomain boundary associated with the Lagrange multiplier that imposes the continuity constraint on the
global approximation. The classical mortaring, devised for the needs of domain decomposition methods [27], has
been adapted recently as multiscale discretization by Mary Wheeler and her collaborators (e.g. [22,28]). In a two-
scale (two-grid, fine and coarse) method, the aim is to resolve the local heterogeneities on the fine grid introduced
on each coarse block and then glue these approximations together via mortar spaces. The functions in these spaces,
which play the role of Lagrange multipliers, are defined on the boundaries of the coarse partition. In order to design a
stable method, the mortar spaces have to satisfy a proper inf–sup condition. This approach is shown to be well suited
for problems with heterogeneous media and a number of efficient methods and implementations have been proposed,
studied, and used for solving a variety of applied problems (e.g. [11,29,22]).

In this paper, we study multiscale model reduction techniques within the framework of the Hybridizable Discon-
tinuous Galerkin method (HDG). The hybridization of the finite element methods, as outlined in [30], provides ample
possibilities for “gluing” together various finite element approximations. The mechanism of this “glue” is based on the
notions of numerical trace and numerical flux. Numerical trace is a single valued function on the finite element inter-
faces and belongs to a certain Lagrange multiplier space which is used to solve the global problem. The well-posedness
and accuracy are ensured by a proper choice of the numerical flux, that involves a stabilization parameter τ (see,
e.g. [30]). Standard approaches for selecting numerical traces involve the use of piecewise polynomials. However, the
solution along the boundaries of a coarse grid cannot have an arbitrary form and can be represented by a much lower
dimensional space. In this paper, we seek a low dimensional representation of trace spaces. Our approach relies on lo-
cal basis functions that are constructed independently (and in an offline stage) on each coarse-grid cell. The coupling of
these local functions is provided by the HDG technology, where the role of the “glue” plays the space of the numerical
trace whose construction is the main goal of this paper. In this paper, we construct several multiscale spaces for the nu-
merical trace that provide reasonable approximations of the solution and results in a stable multi-scale method. The ef-
ficiency of the proposed methods is demonstrated on a set of numerical experiments with flows in high-contrast media.

The paper is organized in the following way. In Section 2, we present our model problem by using two grids, fine
(that resolves all scales of the heterogeneity in κ) and coarse (where the solution will be sought) and hybridizable
discontinuous Galerkin method. In Section 3, we describe the multiscale FEM based on HDG framework and present
several different choices of spectral basis functions. In Section 4, we present some numerical experiments and report
the error of HDG with the constructed spectral basis spaces and in Section 5, we discuss the numerical results.

2. Preliminaries

2.1. Fine and coarse grids

The multiscale finite element method for the Eq. (1) is based on the hybridizable discontinuous Galerkin method
(HDG) and uses the concept of two-grid approximation.
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Fig. 1. Fine and coarse grids: the coarse-grid blocks are squares while the fine grid finite elements are triangles.

We split the domain Ω into disjoint polygonal subdomains {Ωi }
N
i=1 of diameter O(Hi ) so that Ω = ∪

N
i=1 Ω i , see

e.g. Fig. 1. We denote by FH a face (edge) of the subdomain Ωi , if FH is either shared by Ωi and its neighboring
subdomain Ω j , i.e. FH = Ω i ∩Ω j or FH = Ω i ∩∂Ω . Then E H (Ωi ) denotes the set of all coarse edges of a subdomain
Ωi and E H = ∪

N
i=1 E H (Ωi ).

In each subdomain Ωi we introduce a shape regular triangulation Th(Ωi ) with triangular elements and maximum
mesh-size hi . Faces (edges) of this triangulation are denoted by Fh . Let Th = ∪

N
i=1 Th(Ωi ), Eh(Ωi ) be the set of

all faces of the triangulation Th(Ωi ) and E 0
h (Ωi ) be the set of all interior edges of the triangulation Th(Ωi ) and set

Eh = ∪
N
i=1 Eh(Ωi ). Further xi , i = 1, . . . , Nv , denote the nodes in the partition Th . Note that the scale Hi is associated

only with the subdomains Ωi . Similar construction is assumed in 3-D with Ωi being polyhedra while the fine-grid
elements are simplices or hexahedra.

2.2. Fine-scale hybridizable discontinuous Galerkin method

In this subsection, we present HDG method for the problem (1) on the fine-grid Th . We first write Eq. (1) with
homogeneous Dirichlet boundary conditions in a mixed form:

αq + ∇u = 0 in Ω ,
∇ · q = f in Ω ,
u = 0 on ∂Ω

(2)

with α(x) = κ(x)−1 and further introduce the finite element spaces that are used in the HDG method:

Wh := {w ∈ L2(Th) : w|T ∈ W (T ), T ∈ Th},

Vh := {r ∈ L2(Th) : r|T ∈ V(T ), T ∈ Th},

Mh := {µ ∈ L2(Eh) : µ|Fh ∈ M(Fh), Fh ∈ Eh, µ|∂Ω = 0},

M0
h := {µ ∈ L2(Eh) : µ|Fh ∈ M(Fh), Fh ∈ Eh, µ|∂T = 0},

MH := {µ ∈ L2(E H ) : µ|FH ∈ M(FH ), FH ∈ E H , µ|∂Ω = 0},

Mh,H := M0
h ⊕ MH .

(3)

Here for T ∈ Th the spaces W (T ),V(T ), and M(Fh) are suitable finite element spaces (see, e.g. [30]). For example,
all three space can consist of linear functions. The focus in this paper will be the choice of the space MH .

Further, we assume that the specified above spaces have “nodal” bases so that the coefficients in the representation
of a function with respect to the nodal bases form column vectors in an Euclidean space whose dimension is equal
to the dimension of the finite elements space. Often we shall use the same notation for the function and for its vector
representation (with respect to the nodal bases) when this does not lead to a confusion.



246 Y. Efendiev et al. / Comput. Methods Appl. Mech. Engrg. 292 (2015) 243–256

The multiscale HDG method is: Find (uh, qh,uh,H ) ∈ Wh × Vh × Mh,H such that

(αqh, r)Th − (uh,∇ · r)Th +
uh,H , r · n


∂Th

= 0 ∀r ∈ Vh,

−(qh,∇w)Th +
qh,H · n, w


∂Th

= ( f, w)Th ∀w ∈ Wh,qh,H · n, µ

∂Th

= 0 ∀µ ∈ Mh,H ,uh,H = 0 on ∂Ω .

(4)

Here, uh,H and qh,H are the numerical trace and the numerical flux, correspondingly. We write (η, ζ )Th :=
T ∈Th

(η, ζ )T , where (η, ζ )D denotes the integral of ηζ over the domain D ∈ Rn and ⟨η, ζ ⟩∂Th
:=


T ∈Th

⟨η, ζ ⟩∂T ,
where ⟨η, ζ ⟩∂D denotes the integral of ηζ over the boundary of the domain ∂D ⊂ Rn−1. Consequently, ⟨η, ζ ⟩∂Ωi

:=
∂Ωi

ηζds. The HDG method formulation is completed with the definition of the normal component of the numerical
trace:

qh,H · n = qh · n + τ(uh −uh,H ), (5)

where τ is a non-negative stabilization parameter. We remark that if there is only one coarse grid (i.e. Ωi = Ω , i = 1)
then this is the standard HDG method [30].

3. The multiscale hybridizable discontinuous Galerkin method

In this section, we will construct local multiscale basis functions for MH . For this, we propose the structure of the
multiscale HDG method and local spectral problems are designed and solved to compute multiscale basis functions.
To keep our presentation simple, we first show the structure of the multiscale HDG with given multiscale functions.
Next, we will discuss how these functions can be generated.

3.1. The multiscale HDG framework

The main feature of this method is that it could be implemented in such a way that we need to solve global system
on the coarse mesh only. To do this, we split the third equation of (4) into two equations by testing separately with
µ ∈ M0

h and µ ∈ MH so thatqh,H · n, µ

∂Th

= 0 ∀µ ∈ M0
h (6)

and qh,H · n, µ

∂Ωi

= 0 ∀µ ∈ MH and i = 1, . . . , N . (7)

Now because of the structure of the space M0
h we can implement the solution of Eq. (6) independently on each

subdomain Ωi . Indeed, for a particular subdomain Ωi , let uh,H = ξH , where ξH ∈ MH . Then on Ωi , we can find the
solution (uh,qh,uh,H )|Ωi by restricting Eq. (4) to Ωi :

(αqh, r)Th(Ωi ) − (uh,∇ · r)Th(Ωi ) +
uh,H , r · n


∂Th(Ωi )

= 0,

−(qh,∇w)Th(Ωi ) +
qh,H · n, w


∂Th(Ωi )

= ( f, w)Th(Ωi ),qh,H · n, µ

∂Th(Ωi )

= 0,uh,H = ξH on ∂Ωi

(8)

for all (w, r, µ) ∈ Wh |Ωi × Vh |Ωi × M0
h |E 0

h (Ωi )
. Here, we have used the relation (5) for the “numerical flux” qh,H .

In fact, the above system is the regular HDG methods defined on Ωi . From [30], we already know that under proper
choice of the spaces W (T ), V(T ), and M(Fh) this problem is stable. Using the superposition principle the solution
of Eq. (8) can be further split into two parts, namely,

(qh, uh,uh,H ) = (qh( f ), uh( f ),uh,H ( f ))+ (qh(ξH ), uh(ξH ),uh,H (ξH )), (9)
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(A) Heterogeneous coefficient. (B) Fine-scale solution. (C) Coarse-scale solution.

Fig. 2. Numerical results for multiscale HDG framework with MH (F) = P2(F), h = 1/32, H = 1/2, and η = 104.

where (qh( f ), uh( f ), ûh,H ( f )) satisfies

(αqh( f ), r)Th(Ωi ) − (uh( f ),∇ · r)Th(Ωi ) +
uh,H ( f ), r · n


∂Th(Ωi )

= 0,

−(qh( f ),∇w)Th(Ωi ) +
qh,H ( f ) · n, w


∂Th(Ωi )

= ( f, w)Th(Ωi ),qh,H ( f ) · n, µ

∂Th(Ωi )

= 0,uh,H ( f ) = 0 on ∂Ωi ,

for all (w, r, µ) ∈ Wh |Ωi × Vh |Ωi × M0
h |E 0

h (Ωi )
and (qh(ξH ), uh(ξH ),uh,H (ξH )) satisfies

(αqh(ξH ), r)Th(Ωi ) − (uh(ξH ),∇ · r)Th(Ωi ) +
uh,H (ξH ), r · n


∂Th(Ωi )

= 0,

−(qh(ξH ),∇w)Th(Ωi ) +
qh,H (ξH ) · n, w


∂Th(Ωi )

= 0,qh,H (ξH ) · n, µ

∂Th(Ωi )

= 0,uh,H (ξH ) = ξH on ∂Ωi ,

for all (w, r, µ) ∈ Wh |Ωi × Vh |Ωi × M0
h |E 0

h (Ωi )
.

Then Eq. (7) reduces to finding ξH ∈ MH such that

a(ξH , µ) = l(µ) for all µ ∈ MH , (10)

where the bilinear form a(ξH , µ) : MH × MH → R and the linear form l(µ) : MH → R are defined as

a(ξH , µ) :=

N
i=1

qh,H (ξH ), µ

∂Ωi

and l(µ) := −

N
i=1

qh,H ( f ), µ

∂Ωi

. (11)

We note that the same procedure can be applied for the case of non-homogeneous boundary data u = g on ∂Ω as
well.

To motivate the need for multiscale spaces for MH , we first present numerical examples using polynomial functions
for MH . In Fig. 2, the high-contrast coefficient κ(x), fine-scale solution, and multiscale solution with polynomial
MH space are shown. In Fig. 2(A), the black region indicates the coefficient κ(x) = η and the white region the
coefficient κ(x) = 1. The error between the fine-scale solution and the multiscale solution with polynomial space
MH is 37.4%. This representative example shows a need to go beyond piece-wise polynomial functions for MH . In
particular, when using spectral basis introduced in next sections, one can reduce the error below 5%. Next, we will
discuss the construction of new multiscale spaces.

3.2. A framework for constructing the multiscale space MH

Although the multiscale space MH lives only on the coarse skeleton E H , it needs to involve some information of
the permeability field within coarse blocks. A reasonable approach is to construct a number of snapshots using local
solutions defined on a subdomain around a face F (or set of faces) and then take the traces of those functions on E H to
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form the space MH . This will resemble traces of the global solution and avoid a very high-dimensional representation
of the traces. In what follows, we present a general strategy of the construction of MH :

Step 1: Partition of skeleton. First, we decompose the skeleton E H by defining a covering E H = ∪Ei , where the
summation is over all partitions Ei . Here each Ei can be a single coarse edge or a union of several coarse edges. We
allow overlaps between Ei , E j , for some i and j , Ei


E j ≠ 0. For each Ei , we associate a support domain ωi such

that Ei ⊂ ωi . For instance, if Ei is a single coarse face then ωi can be any one of the neighboring coarse blocks sharing
this face or the union of the neighboring blocks that share the face.

Step 2: Local snapshot spaces V snap(ωi ). For each ωi , we introduce the local snapshots {φ j }
Ni
j=1 that are defined

on ωi and take

V snap(ωi ) = span{φ j }
Ni
j=1. (12)

The snapshots can be given explicitly or computed via solutions of local boundary value or local spectral problems
in ωi . The snapshots can represent the fine-scale features of the solution and thus the choice of the snapshot space
impacts the dimension of the local spectral problems.

Now, we present two examples for computing the snapshot space. These examples will be used in later sections.
The simplest choice would be a snapshot space V snap(ωi ) that consists of all fine-grid basis functions (see

Section 3.3.1) defined on ωi . Such choice substantially reduces the computational cost associated with calculating
the snapshot vectors.

A second approach is based on local solutions of the problem. Let {xl}
Ni
l=1 be the set of all fine nodes on ∂ωi . For

each ωi we define the function φl as the finite element solution of the following local problem (in a discrete setting):

∇ · (κ∇φl) = 0 in ωi , φl = δl on ∂ωi . (13)

Here δl is a continuous piecewise linear function defined on ∂ωi such that δl(x) = 1 on xl and vanishes on all other
nodes.

Step 3: Form the multiscale space MH . For each ωi , we perform a spectral decomposition of V snap(ωi ) via some
generalized eigenvalue problem

Aψ = λMψ. (14)

Choices of the (stiffness) matrix A and the (mass) matrix M will be discussed in the following section. If the snapshot
space consists of all fine-grid basis functions inωi , the eigenvalue problem (14) reduces to solving the spectral problem
with local stiffness and mass matrices defined on ωi . We order the eigenvalues as 0 ≤ λi,1 ≤ λi,2 ≤ · · · ≤ λi,Ni and
select the first L i eigenfunctions ψi,1, . . . , ψi,L i to form a smaller subspace V off(ωi ):

V off(ωi ) = span{ψi, j }
L i
j=1.

For each ωi , we form the local multiscale space MH (F) by taking the traces of the functions in V off on each F and
form the set of traces of ψi, j on the face F :

F∈Ei

{ψi, j |F : ψi, j ∈ V off(ωi ), j = 1, . . . , L i }.

Note that, in general, these functions will not be linearly independent so we need to perform a Proper Orthogonal
Decomposition (POD) in order to eliminate the linearly dependent modes (e.g., [31]) or to select most important modes
in order to further reduce the dimension to L F . In this way, we produce the space MH (F). Finally, the multiscale space
MH is defined as:

MH :=


F∈E H

MH (F).

Remark 3.1. Notice that in general MH is nonconforming in the sense that the functions in MH will have
discontinuities on the coarse grid nodes. If it is desired to have a conforming space, in Step 1, we need to ensure
that {ωi }

N
i=1 is a covering of the domain Ω . Let {χi }

N
i=1 be a set of partition of unity functions associated with the
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(A) Coarse grid for the space II-a. (B) Coarse grid for the space II-b.

Fig. 3. Illustration of a coarse neighborhood and coarse element.

covering {ωi }
N
i=1. In Step 3, we modify the definition of V off by multiplying the space with the partition of unity

function χi (so the functions are globally continuous and hence MH is conforming) to get

V off(ωi ) = span{χiψi, j }
L i
j=1. (15)

3.3. Examples of multiscale spaces MH

In this section, we present examples of the construction of multiscale spaces. The Multiscale Spaces I (see
Sections 3.3.1 and 3.3.2) will use the traces of the multiscale functions constructed locally on each coarse block,
where these multiscale functions are a low dimensional representation of the solution in each Ωi and thus they provide
a low dimensional trace space MH . Furthermore, we remove linearly dependent components.

For the Multiscale Spaces II, defined in Sections 3.3.3 and 3.3.4, we employ local eigenvalue problem defined on
coarse blocks that strictly contain the face F . Compared to the first approach, the second approach uses oversampling
technique in computing MH . The method proposed in Section 3.3.4 uses a partition of unity and provides a conforming
MH .

Due to the stabilization parameter τ , the stability estimate of the system is independent of the choice of the
multiscale space MH . A brief discussion on this issue is in Section 3.4.

3.3.1. The Multiscale Space I-a
For this choice, Ei refers to the boundary of a coarse-grid element Ωi and ωi = Ωi (see Fig. 3). The snapshot space

consists of all fine-grid functions in Ωi .
We generate the V off(ωi ) by solving the local spectral problem described below. Let Xh(Ωi ) be the conforming

finite element space of continuous piece-wise linear functions in Th(Ωi ). For any given subdomain Ωi , we find λ and
ψ ∈ Xh(Ωi ) such that

Ωi

κ(x)∇ψ∇zdx = λ


Ωi

κ(x)ψzdx ∀z ∈ Xh(Ωi ). (16)

κ is a properly selected weight. For a scalar permeability, we select κ = κ . For tensor permeability, for the choice ofκ , we refer to [6]. We order the eigenvalues so that 0 = λi,1 ≤ λi,2 ≤ · · · ≤ λi,Ni , where Ni is the number of vertices
of Th(Ωi ). Then V off(Ωi ) is the space spanned by the eigenfunctions ψi,l , l = 1, . . . , L i corresponding to the first L i
eigenvalues.

As we see from (3), the space MH is defined face-wise. Therefore, for a face F ∈ E H common for the coarse
blocks Ωi and Ω j we collect all traces of the constructed above eigenfunctions, namely

F ∈ E H (Ωi ) ∩ E H (Ω j ) : ψi,l,F = ψi,l |F , l = 1, . . . , L i , ψ j,l,F = ψ j,l |F , l = 1, . . . , L j . (17)

The selected traces are in general linearly dependent, so we need to eliminate the linearly dependent ones. We use the
POD method and select the first L F linearly independent functions denoted by ψ j,F , j = 1, . . . , L F . Thus, for any
F ∈ E H we define

M Ia
H (F) := span{ψ j,F , 0 ≤ j ≤ L F }, and M Ia

H :=


F∈E H

M Ia
H (F). (18)
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3.3.2. The Multiscale Space I-b
The definition of ωi and Ei is the same as in the case of the Multiscale Space I-a. Let mEi be the number of nodal

basis functions corresponding to the fine-grid nodes on Ei . Then the snapshot space is defined by the finite element
approximations (we keep the same notation for discrete solution as the continuous solution in (13)) φl , l = 1, . . . ,mEi

of the problem (13) on Xh(ωi ):

V snap(Ωi ) = span{φl , 1 ≤ l ≤ mEi }. (19)

To compute the local spectral problem, we define the matrices

Asnap
i =


Ωi

κ∇φl∇φl ′dx

mEi

l,l ′=1,
, Msnap

i =


1
H


Ei

κφlφl ′ds

mEi

l,l ′=1
.

Using these matrices, we solve the following algebraic eigenvalue problem:

Asnap
i 6i = Λi Msnap

i 6i , (20)

where Λi is the diagonal matrix with the eigenvalues on the diagonal, 6i is a square matrix with columns that are the
corresponding eigenvectors. We define the functions along the edge F ∈ Ei

ψ j,F = ψ j,Ei |F ,

where ψ j,Ei is the linear combination of snapshot vectors with the coefficients being the coordinates of the j th
eigenvector.

Further, if F is a common face of Ωi and Ω j , we need to apply POD procedure in order to eliminate linearly
dependent functions. After the POD process, we get L F functions ψ1,F , . . . , ψL F ,F . Then for F ∈ E H

M Ib
H (F) = span


ψ j,F : 0 ≤ j ≤ L F


and M Ib

H :=


F∈E H

M Ib
H (F). (21)

3.3.3. The Multiscale Space II-a
We define Ei as a single coarse face and ωi as the union of two coarse elements, Ω1 and Ω2, that share this face Ei ,

see Fig. 3(A). The snapshot space will consist of all fine-grid functions and thus the local spectral problem is solved
directly on a fine grid (locally). In this case, we solve the following eigenvalue problem in a coarse neighborhood ωi
(see Fig. 3). Let Xh(ωi ) be the conforming finite element space of continuous piece-wise linear functions in Th(ωi ).
For any given coarse neighborhood ωi and the common face Ei , we find λ and ψ ∈ Xh(ωi ) such that

ωi

κ(x)∇ψ∇zdx =
λ

H


Ei

κψzds, ∀z ∈ Xh(ωi ),

with κ = 2κ1κ2/(κ1 + κ2) and κ1 = κ|Ω1 and κ2 = κ|Ω2 .
We order the eigenvalues so that 0 ≤ λi,1 ≤ λi,2 ≤ · · · ≤ λi,Ni , where Ni is the number of vertices of Th(ωi ) and

denote the corresponding eigenfunctions by ψi,1, ψi,2, . . . , ψi,Ni , which form the space V off(ωi ). Since the space MH
is defined face-wise, we consider the traces of the constructed above eigenfunctions, denoted by ψl,F , l = 1, . . . , Ni ,
where F is the common coarse face of ωi . These functions may be linearly dependent, so we choose linearly
independent ones and further reduce their number by taking those that correspond to the smallest L F eigenvalues.
These are the functions we use as a basis for the space MH :

M I Ia
H (F) := span{ψ j,F , 1 ≤ j ≤ L F } so that M I Ia

H :=


F∈E H

M I Ia
H (F). (22)

3.3.4. The Multiscale Space II-b
For each node xi we define Ei as the union of all coarse faces (edges) that share the node xi . Similarly, ωi is the

union of coarse elements that share a common node xi (see Fig. 3, where the coarse grid elements that form ωi are
Ω1, . . . ,Ω4).
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We choose for the snapshot space the set of all fine-grid functions. Then the local spectral problem (14) is a finite
element approximation of the following homogeneous Neumann eigenvalue problem: find ψaux

∈ Xh(ωi ) such that
ωi

κ(x)∇ψaux
∇zdx = λ


ωi

κ̃ψauxzds, ∀z ∈ Xh(ωi ) with κ̃ := κ

Nv
l=1

|∇χl |
2, (23)

where χl form partition of unity, e.g., piece-wise bilinear functions (see [7]).
Then, we order the eigenvalues as 0 = λi,1 ≤ λi,2 ≤ · · · and choose the L i eigenfunctions ψaux

i,1 , . . . , ψ
aux
i,L i

,

associated to the smallest eigenvalues and form basis ψi, j = χiψ
aux
i, j . Due to the properties of χi , ψi, j ∈ H1

0 (Ω).

Thus, we form V off(ωi ) = span{ψi, j }
L i
j=1.

Finally, we define

M I Ib
H (F) =


F∈Ei

V off(ωi )|F and M I Ib
H :=


F∈E H

M I Ib
H (F),

where V off(ωi )|F denotes the traces on F of the functions in V off(ωi ).

3.4. Solvability of the spectral multiscale HDG method.

Next, we discuss the stability and solvability of the HDG method with multiscale spaces constructed in the previous
section. To proceed, we need the following two assumptions on the local fine element spaces.

Assumption 3.2. For any K ∈ Th , F∗ an arbitrary edge of K , and µ ∈ Mh(F), F ∈ ∂K , there exists a element
Z ∈ V(K ) such that

(Z,∇w) = 0, for all w ∈ W (K ),

Z · n|F = µ, for all F ∈ ∂K\F∗.

This assumption is trivially satisfied by all classical mixed finite elements as well as HDG elements (e.g. see
[30,32] for more details). The next assumption is for the stabilization parameter τ .

Assumption 3.3. On each FH ∈ T E , for any T adjacent to FH , i.e. T̄ ∩ FH ≠ ∅, there exists at least one element
K ∈ TT adjacent to FH , such that the stabilization operator τ > 0 on F∗

= FH ∩ ∂K .

Now we state the solvability result of the method that is established by using the approach developed in [32].

Theorem 3.4. If Assumptions 3.2 and 3.3 are satisfied, then for any f , the system (8) has unique solution.

We end this section by some discussions on the motivation of the construction of a coarse space MH . In an ongoing
research on the topic we have established some error estimates for the multiscale HDG method. Roughly speaking,
for the primary unknown u, we have the bound:

∥u − uh∥Ω ≤ C∥u − PM u∥ 1
2 ,∂T H

+ Ch
1
2 ∥u − PM u∥0,∂T H + C(h, τ ). (24)

Here PM u denotes the orthogonal L2 projection onto the space MH . The norms are defined as ∥u − PM u∥s,∂T H :=N
i=1 ∥u − PM u∥s,∂Ωi . The last term, C(h, τ ), in this estimate involves several terms that depend on the mesh size h

and the stabilization parameter τ and converges to zero if the fine-grid size h approaches to zero and τ = O(1). As
one can see, ∥u − PM u∥ 1

2 ,∂T H
is crucial in the estimate. With a further refined analysis, this term could be bounded

by

∥u − PM u∥ 1
2 ,∂T H

≤ inf
v∈MH

∥u − v∥ 1
2 ,∂T H

+ C(τ, h), (25)

where C(h, τ ) has the same meaning as above. The above estimate is essential for choosing an appropriate space MH
and a projection of the solution to MH . From this estimate, we can see that one should construct the coarse space MH
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(A) Example 1. (B) Example 2.

Fig. 4. Topology of heterogeneous coefficient κ .

in such a way that it can provide a good approximation of u in the H
1
2 -norm along the coarse edges. In particular,

we will need a majorizing norm which will define a local spectral problem and corresponding snapshot functions that
will allow us to bound the error. This is a guideline for us in the above construction. Using (24) and (25), we can
obtain error bounds similar to those in [14] for the MS Space II-b where the error scales as the inverse of the smallest
eigenvalue that the corresponding eigenvector is not included in the coarse space. Because of the oversampling, we
expect the approach for the MS Space II-b will have a better convergence rate compared to [33,14].

4. Numerical results

In this section we discuss representative numerical results. We compute the coarse-grid solution and study the error
with respect to the reference solution (or the fine-grid solution of (4)). We note that the solution of (4) depends on
both fine-scale and coarse-scale parameters, h and H . We are mainly interested on the convergence (to the reference
solution) when we add more spectral basis functions. We study the error behavior due to the addition of coarse basis
functions for fixed value of h and H .

We consider the domain Ω = (0, 1)2 and divide Ω into N = M × M square coarse blocks, {Ωi }
N
i=1, which are

unions of fine elements. In this case H = 1/M is the coarse mesh parameter. Inside each subdomain Ωi , we generate
a structured triangulation with m subintervals in each coordinate direction (and thus h = 1/(Mm) is the fine mesh
parameter). We consider the solution of Eq. (4) with f = 1 and the stabilization parameter τ = 1 on each edge
(coarse and fine edge). We test our methods on two different distributions of the coefficient κ(x) shown in Fig. 4.
κ(x) = 1 are for the points in the white background and κ(x) = η are for the points in the black regions. Example 1
represents the permeability of the media with highly permeable inclusions and relatively short isolated channels (not
interconnected). Example 2 has one global channel. In our experiments, we consider η to be 104.

We consider the following finite element spaces which satisfy the assumptions of Section 3.4 in order to apply
the multiscale HDG method. Wh and Vh consist of piece-wise linear, discontinuous functions on Th , Mh of piece-
wise linear, discontinuous functions in Eh , and MH is the multiscale finite element space, which is constructed in the
previous section. To compute the error of q, we define the weighted L2-norm as following:

∥q∥
2
α,L2(Ω) :=


Ω
α|q|

2dx .

We compute the relative L2-norm of the error for the solution ∥u∗

h − u H ∥L2(Ω) and the relative weighted L2-norm of
the error for the velocity ∥q∗

h − qH ∥α,L2(Ω)—between the fine-scale solutions (u∗

h, q∗

h) and the coarse-grid solutions:
(I) (u I

H , qI
H ) introduced in Sections 3.3.1 and 3.3.2 or (II) (u I I

H , qI I
H ) in Sections 3.3.3 and 3.3.4.

4.1. Numerical results for Multiscale Spaces I applied to Example 1

In this subsection, we present the numerical experiments for the spaces introduced in Sections 3.3.1 and 3.3.2.
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Table 1
Numerical results for Example 1 when using Multiscale Spaces I (Sections 3.3.1 and 3.3.2) with increasing
dimension of the coarse space, h = 1/100, H = 1/10, η = 104. “Dim.” stands for the dimension of the
coarse space.

Multiscale Space I-a Multiscale Space I-b
Dim. ∥u∗

h − u H ∥L2(Ω) ∥q∗
h − qH ∥

α,L2(Ω) Dim. ∥u∗
h − u H ∥L2(Ω) ∥q∗

h − qH ∥
α,L2(Ω)

180 0.6412 0.8028 180 0.6412 0.8028
469 0.1208 0.3547 514 0.0393 0.2321
682 0.0362 0.2181 738 0.0312 0.1395
888 0.0204 0.1659 848 0.0266 0.1247

Table 2
Numerical results for Multiscale Space II-a (Section 3.3.3) with
increasing dimension of the coarse space, h = 1/100, H = 1/10, η =

104. “Dim.” stands for the dimension of the coarse space.

Dim. ∥u∗
h − u H ∥L2(Ω) ∥q∗

h − qH ∥
α,L2(Ω)

180 0.6412 0.8028
360 0.0561 0.2843
540 0.0274 0.2306
720 0.0251 0.1627

Table 3
Numerical results for Multiscale Space II-b (Section 3.3.4) with
increasing dimension of the coarse space, h = 1/100, H = 1/10, η =

104. “Dim.” stands for the dimension of the coarse space.

Dim. ∥u∗
h − u H ∥L2(Ω) ∥q∗

h − qH ∥
α,L2(Ω)

360 0.1078 0.3290
720 0.0384 0.0922

1080 0.0381 0.0629

In these numerical experiments, we add multiscale basis functions and study the error decay as the coarse space
dimension increases. The coefficient κ(x) is depicted in Fig. 4. The results for the errors are presented in Table 1 for
h = 1/100 and H = 1/10. We report the dimension of the coarse spaces (designated by “Dim.”). We remind that for
nth row of the table, we add n eigenfunctions from both sides of the edge and remove linearly dependent vectors. For
this reason, the dimensions of the coarse space do not form a geometric progression.

The results show a convergence to the reference solution (fine-grid solution). We observe a fast error decay when
adding more coarse basis functions. In particular, for H = 1/10, we only have the dimensions of coarse spaces 682
and 738 to get the solution error 3.6% and 3.1% for the MS Space I-a and I-b, respectively. This error is computed
with respect to the fine-grid solution with the fine-grid mesh size h = 1/100 and the dimension of fine-scale system
is 60,000. We observe from this table that the MS Space I-b performs slightly better compared to the MS Space I-a.

4.2. Numerical results for Multiscale Spaces II applied to Example 1

Next, we consider the spaces introduced in Sections 3.3.3 and 3.3.4. We note that these spaces use an oversampling
technique by solving local problems around faces and the numerical results corresponding to the MS Spaces II are
better compared to MS Spaces I.

Fig. 5 illustrates the effect of increasing the dimension of the coarse space in the MS Space II-a. We show the
fine-scale solution and coarse-scale solutions computed with three different coarse space dimensions in Fig. 5. We
repeat the detailed numerical study described in Section 4.1. The results for the computation of errors with the MS
Space II-a and II-b are presented in Tables 2 and 3 for h = 1/100 and H = 1/10, respectively. When we use the
coarse space with the dimension of 720, we observe that the solution errors for the MS Space II-a and II-b are 2.5%
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(A) Fine-scale solution. (B) Coarse-scale solution with Dim. = 180.

(C) Coarse-scale solution with Dim. = 720. (D) Coarse-scale solution with Dim. = 1800.

Fig. 5. Comparison of the coarse-scale solutions for MS Space II-a with the reference (fine-scale) solution.

and 3.8% and the velocity errors are 16.3% and 9.2%, respectively. Here, the dimension of the fine-grid system is
60,000.

4.3. Numerical results for Example 2

Next, we consider a different permeability field for Example 2 (see Fig. 4) with the contrast η = 104. For this
permeability field, a long channel in the middle of the domain is added to introduce a long-range effect in the solution.
The numerical results are presented in Figs. 6 and 7 where solution and velocity errors for these spaces are depicted.
We note that the convergence behavior of these methods is similar to the previous permeability case with the errors
that are slightly smaller.

We have also tested all the presented approaches for η = 106 and observed similar accuracy. This shows that the
method is robust with respect to the contrast.

5. Conclusion

In this paper, we propose spectral multiscale finite element methods for second order elliptic equations in the
framework of the hybridizable discontinuous Galerkin finite element method. We propose several finite element spaces
for the numerical traces. The main idea of the proposed method is to construct a low dimensional trace space MH . In
the paper, we present a general framework for defining trace spaces, which consists of three steps: (1) a partition of the
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Fig. 6. Numerical results for MS Spaces I and II applied to permeability field of Example 2 of Fig. 4 with h = 1/100, H = 1/10, and η = 104 and
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vs. the dimension of the coarse space.
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Fig. 7. Numerical results for MS Spaces I and II applied to permeability field of Example 2 of Fig. 4 with h = 1/100, H = 1/10, and η = 104 and
increasing dimension of the coarse space. “Dim.” stands for the dimension of the coarse space. The graphs show the relative error ∥q∗

h −qH ∥
α,L2(Ω)

vs. the h dimension of the coarse space.

coarse skeleton; (2) a construction of a local snapshot space; (3) a construction of the offline space and consequently
a construction of the numerical trace space. Within this framework, we propose and test two classes of coarse spaces.
The first class uses the boundaries of the coarse-grid subdomain to construct trace space, while the second class
constructs the traces on the faces that are strictly within coarse blocks. In this regard, the second approach uses an
oversampling technique where the information in larger domains is used in constructing multiscale basis functions.
The presented numerical results for both methods show that one can achieve a good accuracy with a few degrees of
freedom along each edge and the approaches that use oversampling provide better accuracy. In our future work, we
plan to present detailed error analysis.
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