دانلود رایگان مقاله انگلیسی یک چارچوب ارزیابی خارج از نمونه برای DEA با کاربرد آن در پیش بینی ورشکستگی - اشپرینگر 2017

عنوان فارسی
یک چارچوب ارزیابی خارج از نمونه برای DEA با کاربرد آن در پیش بینی ورشکستگی
عنوان انگلیسی
An out-of-sample evaluation framework for DEA with application in bankruptcy prediction
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
16
سال انتشار
2017
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
کد محصول
E6449
رشته های مرتبط با این مقاله
علوم اقتصادی
گرایش های مرتبط با این مقاله
اقتصاد مالی، اقتصاد پولی
مجله
سالنامه تحقیقات عملیاتی - Annals of Operations Research
دانشگاه
University of Edinburgh - Business School - UK
کلمات کلیدی
تحلیل پوشش داده ها، ارزیابی خارج از نمونه، K-نزدیکترین همسایه، پیش بینی ورشکستگی، ارزیابی ریسک
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Nowadays, data envelopment analysis (DEA) is a well-established non-parametric methodology for performance evaluation and benchmarking. DEA has witnessed a widespread use in many application areas since the publication of the seminal paper by Charnes, Cooper and Rhodes in 1978. However, to the best of our knowledge, no published work formally addressed out-of-sample evaluation in DEA. In this paper, we fill this gap by proposing a framework for the out-of-sample evaluation of decision making units. We tested the performance of the proposed framework in risk assessment and bankruptcy prediction of companies listed on the London Stock Exchange. Numerical results demonstrate that the proposed out-of-sample evaluation framework for DEA is capable of delivering an outstanding performance and thus opens a new avenue for research and applications in risk modelling and analysis using DEA as a non-parametric frontier-based classifier and makes DEA a real contender in industry applications in banking and investment.

نتیجه گیری

4 Conclusions


Out-of-sample evaluation is commonly used for validating prediction models of both continuous and discrete variables and testing their performance. The counterpart of this evaluation framework is lacking in DEA. This paper fills this gap. In fact, we proposed a generic outof-sample evaluation framework for DEA and tested the performance of an instance of it in bankruptcy prediction. The accuracy of our framework, as suggested by our numerical results, suggests that this tool could prove valuable in industry implementations of DEA models in bankruptcy prediction and credit scoring. We also provided empirical evidence that DEA as a classifier is a real contender to Discriminant Analysis, which is one of the most commonly used classifiers by practitioners.


بدون دیدگاه