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Abstract Nowadays, data envelopment analysis (DEA) is a well-established non-parametric
methodology for performance evaluation and benchmarking. DEA has witnessed a
widespread use in many application areas since the publication of the seminal paper by
Charnes, Cooper and Rhodes in 1978. However, to the best of our knowledge, no published
work formally addressed out-of-sample evaluation in DEA. In this paper, we fill this gap by
proposing a framework for the out-of-sample evaluation of decision making units. We tested
the performance of the proposed framework in risk assessment and bankruptcy prediction
of companies listed on the London Stock Exchange. Numerical results demonstrate that the
proposed out-of-sample evaluation framework for DEA is capable of delivering an outstand-
ing performance and thus opens a new avenue for research and applications in risk modelling
and analysis using DEA as a non-parametric frontier-based classifier and makes DEA a real
contender in industry applications in banking and investment.

Keywords Data envelopment analysis · Out-of-sample evaluation · K-Nearest neighbor ·
Bankruptcy prediction · Risk assessment

1 Introduction

Since the publication of the seminal paper by Charnes, Cooper and Rhodes in 1978, Data
envelopment analysis (DEA) has become a well-established non-parametric methodology
for performance evaluation and benchmarking. DEA has witnessed a widespread use in
many application areas—see Liu et al. (2013) for a recent survey, and Mousavi et al. (2015)
and Xu and Ouenniche (2011, 2012a, b) for a recent application area—along with many
methodological contributions—see, for example, Banker et al. (1984), Andersen and Petersen
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(1993), Tone (2001, 2002) and Seiford and Zhu (2003). Despite the growing use of DEA, to
the best of our knowledge, no publishedwork formally addressed out-of-sample evaluation in
DEA. In this paper, we fill this gap by proposing a framework for the out-of-sample evaluation
of decision making units.

We illustrate the use of the proposed framework in bankruptcy prediction of companies
listed on the London Stock Exchange. Note that prediction of risk class or bankruptcy is one
of the major activities in auditing firms’ risks and uncertainties. The design of reliable models
to predict bankruptcy is crucial for many decision making processes. Bankruptcy prediction
models could be divided into two broad categories depending on whether they are static (see,
for example, Altman 1968, 1983; Taffler 1984; Theodossiou 1991; Ohlson 1980; Zmijewski
1984) or dynamic (see, for example, Shumway 2001; Bharath and Shumway 2008; Hillegeist
et al. 2004). In this paper we shall focus on the first category of models to illustrate how out-
of-sample evaluation of companies could be performed. The most popular static bankruptcy
prediction models are based on statistical methodologies (e.g., Altman 1968, 1983; Taffler
1984), stochastic methodologies (e.g., Theodossiou 1991; Ohlson 1980; Zmijewski 1984),
and artificial intelligence methodologies (e.g., Kim and Han 2003; Li and Sun 2011; Zhang
et al. 1999; Shin et al. 2005). DEA methodologies are increasingly gaining popularity in
bankruptcy prediction (e.g., Cielen et al. 2004; Paradi et al. 2004; Premachandra et al. 2011;
Shetty et al. 2012). However, the issue of out-of-sample evaluation remains to be addressed
when DEA is used as a classifier.

The remainder of this paper is organised as follows. In Sect. 2, we propose a formal frame-
work for performing out-of-sample evaluation in DEA. In Sect. 3, we provide information on
the bankruptcy data we used along with details on the design of our experiment, and present
our empirical findings. Finally, Sect. 4 concludes the paper.

2 A framework for out-of-sample evaluation in DEA

Nowadays, out-of-sample evaluation of statistical, stochastic and artificial intelligence
methodologies for prediction of both continuous and discrete variables is commonly used
for validating prediction models and testing their performance before actual implementation.
The rationale for using out-of-sample testing lies in the following well known facts. First,
models or methods selected based on in-sample performance may not best predict post-
sample data. Second, in-sample errors are likely to understate prediction errors. Third, for
continuous variables, prediction intervals built on in-sample standard errors are likely to be
too narrow. The setup of the standard out-of-sample analysis framework requires one to split
the historical data set into two subsets, where the first subset often referred to as a training
set, an estimation set, or an initialization set is used to estimate the parameters of a model,
whereas the second subset generally referred to as the test set or the handout set is used to test
the prediction performance of the fitted model. The counterpart of this testing framework is
lacking in DEA. In this paper, we propose an out-of-sample evaluation framework for static
DEA models. The proposed framework in general in that it can be used for any classification
problem or number of classes and any application. Note that, without loss of generality, the
proposed framework is customized for a bankruptcy prediction application with two risk
classes (e.g., bankrupt class and non-bankrupt class, or low risk of bankruptcy class and high
risk of bankruptcy class), as customary in most research on bankruptcy prediction, for the
sake of illustrating the empirical performance of our framework. Obviously this risk clas-
sification into two categories or classes could be refined, if the researcher/analyst wished
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to do so, into more than two classes when the presence of non-zero slacks is suspected or
proven to be a driver of bankruptcy; for example, one might be interested in refining each of
the above mentioned risk classes into two subclasses depending on whether the slacks of a
bankrupt (respectively, non-bankrupt) DMU sum to zero or not. In other practical settings,
the researcher/analyst might be interested in the level or degree of distress prior to bankruptcy
in which case one might also consider more than two risk or distress classes. In the remaining
of this paper, we denote the variable on risk class belonging as Y . Hereafter, we describe the
main steps of the proposed out-of-sample evaluation framework for DEA:

Input: data set of historical observations, say X , where each observation is a DMU (e.g.,
firm-year observations where firms are listed on the London Stock Exchange) along with
the corresponding available information (e.g., financial ratios) and the observed risk or
bankruptcy status Y ;

Step 1: divide the “historical” sample X into an estimation set XE – hereafter referred to as
training sample I—and a test set XT – hereafter referred to as test sample I. Then,
customize XE and XT for the implementation of a specific DEA model by only
retaining the input and output information used by the DEA model, which results
in X I−O

E and X I−O
T – hereafter referred to as training sample II and test sample II,

respectively;
Step 2: solve an appropriate DEA model to compute DEA efficiency scores and the slacks

for DMUs in training sample X I−O
E and classify them according to a user-specified

classification rule into, for example, risk or bankruptcy classes, say Ŷ I−O
E . Then,

compare the DEA based classification of DMUs in X I−O
E into risk classes; that is,

the predicted risk classes Ŷ I−O
E , with the observed risk classes YE of DMUs in the

training sample, and compute the relevant in-sample performance statistics;
Step 3: use an appropriate algorithm to classify DMUs in X I−O

T into, for example, risk or
bankruptcy classes, say Ŷ I−O

T . Then, compare the predicted risk classes Ŷ I−O
T with

the observed risk classes YT and compute the relevant out-of-sample performance
statistics;

Step 4: for each DMU in X I−O
T , use the multiplier(s) of their closest DMU(s) in X I−O

E to
compute its efficiency score, if required.

Output: in-sample and out-of-sample classifications or risk class belongings of DMUs along
with the corresponding performance statistics, and DEA efficiency scores of DMUs in both
training and test samples.

Note that this procedure is generic in nature. The flowchart of the proposed framework
is depicted in Fig. 1 to provide a snapshot of its design. The implementation of this generic
procedure requires several decisions to be made. First, one has to decide on which DEA
model to use for assessing the efficiency of DMUs in X I−O

E . Second, one has to decide on
which decision rule to use for classifying DMUs in X I−O

E . Third, one has to decide on which
algorithm to use for classifying DMUs in X I−O

T . Finally, one has to decide on how to exploit
the information on the performance of similar DMUs in X I−O

E to assess the performance of
DMUs in X I−O

T . Hereafter, we shall present how we choose to address these questions.

2.1 DEA model for assessing the efficiency of DMUs in the training sample

A variety of DEA models could be used for this task. However, the final choice depends on
the type of application one is dealingwith and the suitability of the DEAmodel or analysis for
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Fig. 1 Flowchart of out-of-sample evaluation framework for static DEA models

such application. For the bankruptcy application, two main categories of DEA models could
be used; namely, best efficiency frontier-based models (e.g., Charnes et al. 1978; Banker
et al. 1984; Tone 2001) and worst efficiency frontier-based models (e.g., Paradi et al. 2004).
Within each of these categories one could choose from a variety of DEAmodels. Note that the
main difference between the best efficiency frontier-based models and the worst efficiency
frontier-based models lies in the choice of the definition of the efficiency frontier. To be
more specific, best efficiency frontier-based DEA models assume that the efficiency frontier
is made of the best performers, whereas the worst efficiency frontier-based DEA models
assume that the efficiency frontier is made of the worst performers (i.e., riskiest DMUs).
In risk modelling and analysis applications, such as bankruptcy prediction, both types of
frontiers or DEA models are appropriate to use; however, the classification rules used in step
2 and step 3 of the detailed procedure would have to be chosen accordingly.

For illustration purposes, in our empirical investigation, we used both a BCC model
(Banker et al. 1984) and an SBM model (Tone 2001) and implemented each of them within
the best efficiency frontier framework. Notice that, since our data consists of financial ratios
which could take negative values, the SBMmodel was implemented within a variable return-
to-scale framework; that is, the convexity constraint was added to the model. These models
are presented in Tables 1, 2, where the parameter xi, j denote the amount of input i used by
DMUj , the parameter yr, j denote the amount of output r produced by DMUj , the decision
variable λ j denote the weight assigned to DMUj ’s inputs and outputs in constructing the
ideal benchmark of a given DMU, say DMUk , the decision variable θk denote the technical
efficiency score of DMUk , and the decision variable ρk denote the slacks-based measure
(SBM) for DMUk .
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Table 1 Best efficiency frontier BCC models

Formulation Description

θk Objective; that is, technical efficiency score. This objective is to be
minimized in the input-oriented version of the model and
maximized in the output-oriented version of the model

∑n
j=1 λ j xi, j ≤ θk · xi,k ; ∀i

or∑n
j=1 λ j xi, j ≤ xi,k ; ∀i

For each input i (i = 1, . . . ,m), the amount used by DMUk ’s
“ideal” benchmark; i.e., its projection on the efficient frontier
(
∑n

j=1 λ j xi, j ), should at most be equal to the amount used by
DMUk whether revised (i.e., amount of input i adjusted for the
degree of technical efficiency of DMUk ) or not depending on
whether the model is input-oriented or not

∑n
j=1 λ j yr, j ≥ yr,k ; ∀r

or∑n
j=1 λ j yr, j ≥ θk · yr,k ; ∀r

For each output r (r = 1, . . . , s), the amount produced by DMUk ’s
“ideal” benchmark; i.e., its projection on the efficient frontier
(
∑n

j=1 λ j yr, j ), should be at least as large as the amount
produced by DMUk whether revised (i.e., amount of output r
adjusted for the degree of technical efficiency of DMUk ) or not
depending on whether the model is output-oriented or not

∑n
j=1 λ j = 1 The technology is required to be convex

λ j ≥ 0; ∀ j Non-negativity requirements

Table 2 Best efficiency frontier SBM models

Formulation Description

ρk = 1 − 1
m

(
∑m

i=1
s−i,k
xi,k

)

Objective; that is, input-oriented SBM measure

ρk = 1

1+ 1
s

(
∑s

r=1

s+r,k
yr,k

) Objective; that is, output-oriented SBM measure

ρk =
1− 1

m

(
∑m

i=1

s−i,k
xi,k

)

1+ 1
s

(
∑s

r=1

s+r,k
yr,k

) Objective; that is, Non-Oriented SBM measure

∑n
j=1 λ j xi, j + s−i,k = xi,k ; ∀i For each input i (i = 1, . . . ,m), the amount used by DMUk ’s

“ideal” benchmark; i.e., its projection on the efficient frontier,
should at most be equal to the amount used by DMUk ; that is:∑n

j=1 λ j xi, j ≤ xi,k ; ∀i
∑n

j=1 λ j yr, j − s+r,k = yr,k ; ∀r For each output r (r = 1, . . . , s), the amount produced by DMUk ’s
“ideal” benchmark; i.e., its projection on the efficient frontier,
should be at least as large as the amount produced by DMUk ;
that is:

∑n
j=1 λ j yr, j ≥ yr,k ; ∀r

∑n
j=1 λ j = 1 The technology is required to be convex

λ j ≥ 0; ∀ j; s−i,k ; ∀i; s+r,k ; ∀r Non-negativity requirements
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Table 3 Generic procedure for computing an optimal DEA score-based cut-off point and the corresponding
classification

Input: choice of a performance measure π and a non-linear programming search algorithm according to the
properties of π

Step 1: compute ξLB and ξUB

Step 2: find the optimal value of ξ with respect to π , say ξ∗, within the interval
[
ξLB , ξUB

]
using the chosen

non-linear programming search algorithm

Step 3: classify DMUs in X I−O
E into two classes; namely bankrupt and non-bankrupt firms or DMUs; that is,

determine Ŷ I−O
E so that DMUs with DEA scores less (respectively, greater) than ξ∗ are assigned to a

bankruptcy class and those with DEA scores greater (respectively, less) than or equal to ξ∗ are assigned to
a non-bankruptcy class if a best practice (respectively, worse practice) efficiency frontier framework was
adopted to compute DEA scores

Output: optimal DEA score-based cut-off point ξ∗ along with the predicted risk classes Ŷ I−O
E

2.2 Decision rule for classifying DMUs in the training sample

Several decision rules could be used to classify the DMUs in the training sample. Obviously
the choice of a decision rule for classification depends on the nature of the classification
problem. To be more specific, decision rules would vary depending on whether one is con-
cerned with a two-class problem or a multi-class problem. In bankruptcy prediction we are
concerned with a two-class problem; therefore, we shall provide a solution that is suitable for
these problems. In fact, we propose a DEA score-based cut-off point procedure to classify
DMUs in X I−O

E . The proposed procedure involves solving an optimization problemwhereby
theDEA score-based cut-off point, say ξ , is determined so as to optimize a given performance
measure, sayπ , over an interval with a lower bound, say ξLB , equal to the smallest DEA score
of DMUs in X I−O

E and an upper bound, say ξUB , equal to the largest DEA score of DMUs
in X I−O

E . In sum, the proposed procedure is based on a performance measure-dependent
approach—see Table 3 for a generic procedure. Note that, in most applications, the perfor-
mance measure π is a non-linear function. The choice of a specific optimization algorithm
for the implementation of the generic procedure outlined in Table 3 depends on whether the
performance measure π is differentiable or not and if it is non-differentiable, whether it is
quasiconvex or not. To be more specific, if π is differentiable, then one could choose Bisec-
tion Search; if π is twice differentiable, then one could choose Newton’s Method; if π is
non-differentiable but quasiconvex, then one could choose Golden Section Search, Fibonacci
Search, Dichotomous Search, or a brute force search such as Uniform Search. For details
on these standard non-linear programming algorithms, the reader is referred to the excellent
book on non-linear programming by Bazaraa et al. (2006). Notice that the last step of this
generic procedure classifies DMUs in the training sample into two classes; namely bankrupt
and non-bankrupt firms or DMUs, and thus the output is the optimal DEA score-based cut-off
point ξ along with the predicted risk classes Ŷ I−O

E .

2.3 Algorithm for classifying DMUs in the test sample

A variety of algorithms could be used for out-of-sample classification of DMUs in X I−O
T

ranging from standard statistical and stochastic methodologies to artificial intelligence
methodologies. In this paper, we propose an instance of our generic out-of-sample evaluation
procedure for DEA where the out-of-sample classification of DMUs in X I−O

T is performed
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Fig. 2 Pseud-code of the k-NN algorithm

using a k-Nearest Neighbor (k-NN) algorithm, which itself is an instance of case-based rea-
soning. The pseudo-code for k-NN is customized for our application and is summarized in
Fig. 2. Note that the k-NN algorithm is also generic in that a number of implementation
decisions have to be made; namely, the size of the neighborhood k, the similarity or dis-
tance metric, and the classification criterion. In our experiments, we tested several values
of k as well as several distance metrics (i.e., Euclidean, Standardized Euclidean, Cityblock,
Hamming, Jaccard, Cosine, Correlation, Mahalanobis). As to the classification criterion, we
opted for the most commonly used one; that is, majority vote. Note that, when computing the
distance between two DMUs, each DMU is represented by its vector of inputs and outputs.

2.4 Computing efficiency scores of DMUs in the test sample

In order to compute the DEA score of those DMUs in X I−O
T , one could opt for one of three

possible approaches. First, one could simply solve a DEA model for each DMU in X I−O
T –

although this option is a valid one, it would defeat the purpose of out-of-sample evaluation.
Instead, we propose to either use the multipliers of a most similar or closest DMU in X I−O

E

to compute the DEA score of a DMU in X I−O
T , or use the multipliers of the � (� > 1) most

similar or closest DMUs in X I−O
E to compute � DEA scores of a DMU in X I−O

T and take
their average or weighted average as the final score.

To conclude this section,wewould like to provide some explanation as towhy the proposed
framework should produce good results. As the reader is aware of by now, the proposed out-
of-sample evaluation framework is based on an instance of the case-based reasoning (CBR)
methodology; namely, k-NN algorithm. CBR is a generic problem solving methodology,
which solves a specific problem by exploiting solutions to similar problems. In sum, CBR
relies on past experience and comparison to the current experience and therefore uses anal-
ogy by similarity. To be more specific, the basic methodological process of this artificial
intelligence methodology involves pattern matching and classification. In our bankruptcy
application, pattern matching would serve to identify DMUs with similar risk profiles (e.g.,
liquidity profiles in our experiments) and therefore is well equipped to discriminate between
bankrupt and non-bankrupt firms. The extent of its empirical performance however would
depend on whether the data or case base is noisy or not, the choice of the similarity criteria
and their measures, the relevance of the features selected (i.e., inputs and outputs in the DEA
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context) and their weights, if any, and the choice of the classification rule, also known as a
target function, as well as the quality of approximation of the target function. In our case,
k-NN serves as a local approximation. For more details on CBR, the reader is referred to, for
example, Richter and Weber (2013).

In the next section, we shall test the performance of our out-of-sample evaluation frame-
work for DEA and report our numerical results.

3 Empirical analysis

In this section, we first describe the process of data gathering and sample selection (see
Sect. 3.1). Then, we present the design of our experiment (see Sect. 3.2). Finally, we present
and discuss our numerical results (see Sect. 3.3).

3.1 Data and sample selection

In this paper, we first considered all UK firms listed on the London Stock Exchange (LSE)
during a 5years period from 2010 through 2014 and defined the bankrupt firms using the
London Share Price Database (LSPD) codes 16 (i.e., firm has receiver appointed or is in
liquidation), 20 (i.e., firm is in administration or administrative receivership), and 21 (i.e.,
firm is cancelled and assumed valueless); the remaining firms are classified as non-bankrupt.
Then, we further reduced such dataset by excluding both financial and utilities firms, on one
hand, and those firms with less than 5 months lag between the reporting date and the fiscal
year, on the other hand.As a result of using these data reduction rules, the final dataset consists
of 6605firm-year observations including 407 (6.16%) observations related to bankrupt firms
and 6198 (94.38%) observations related to non-bankrupt firms. Therefore, we have a total
of 6605 decision making units (DMUs). As to the selection of the training sample and the
test sample, we have chosen the size of the training sample to be twice the size of the test
sample; that is, 2/3 of the total number of DMUs were used in the training sample and the
remaining 1/3 were used in the test sample. The selection of observations was done with
random sampling without replacement so as to ensure that both the training sample and the
test sample have the same proportions of bankrupt and non-bankrupt firms. A total of thirty
pairs of training sample-test sample were generated.

3.2 Design of experiment

In our experiment, we reworked a standard and well known parametric model in the DEA
framework; namely, the multivariate discriminant analysis (MDA) model of Taffler (1984)
to provide some empirical evidence on the merit of the proposed out-of-sample evaluation
framework for DEA. Recall that Taffler’s model makes use of four explanatory variables;
namely, current liabilities to total assets, number of credit intervals, profit before tax to cur-
rent liabilities, and current assets to total liabilities. In our DEA models, current liabilities to
total assets and number of credit intervals were used as inputs, whereas profit before tax to
current liabilities and current assets to total liabilities were used as outputs. We report on the
performance of our out-of-sample evaluation framework for DEA using the commonly used
metrics; namely, type I error (T1), type II error (T2), sensitivity (Sen) and specificity (Spe).
Recall that T1 is the proportion of bankrupt firms predicted as non-bankrupt; T2 is the propor-
tion of non-bankrupt firms predicted as bankrupt; Sen is the proportion of non-bankrupt firms
predicted as non-bankrupt; and Spe is the proportion of bankrupt firms predicted as bankrupt.
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Table 4 Summary statistics of
in-sample performance of DEA
models

Performance measures T1 T2 Sen Spe

BCC-IO

Min 0.0000 0.0000 1.0000 0.9926

Max 0.0074 0.0000 1.0000 1.0000

Average 0.0038 0.0000 1.0000 0.9962

SD 0.0025 0.0000 0.0000 0.0025

BCC-OO

Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

SBM-IO

Min 0.0000 0.0000 1.0000 0.9926

Max 0.0074 0.0000 1.0000 1.0000

Average 0.0032 0.0000 1.0000 0.9968

SD 0.0021 0.0000 0.0000 0.0021

SBM-OO

Min 0.0000 0.0000 1.0000 0.9926

Max 0.0074 0.0000 1.0000 1.0000

Average 0.0030 0.0000 1.0000 0.9970

SD 0.0020 0.0000 0.0000 0.0020

SBM

Min 0.0000 0.0000 1.0000 0.9926

Max 0.0074 0.0000 1.0000 1.0000

Average 0.0030 0.0000 1.0000 0.9970

SD 0.0020 0.0000 0.0000 0.0020

Table 5 Summary statistics of
in-sample and out-of-sample
performance of MDAs

Performance measures T1 T2 Sen Spe

In-sample MDA

Min 0.9705 0.0019 0.9937 0.0000

Max 1.0000 0.0063 0.9981 0.0295

Average 0.9882 0.0026 0.9974 0.0118

SD 0.0067 0.0009 0.0009 0.0067

Out-of-sample MDA

Min 0.0000 0.0000 0.0015 0.0000

Max 1.0000 0.9985 1.0000 1.0000

Average 0.8220 0.1701 0.8299 0.1780

SD 0.3743 0.3766 0.3766 0.3743

3.3 Results

Hereafter, we shall provide a summary of our empirical results and findings. Table 4 provides
a summary of statistics on the performance of the MDA model of Taffler (1984) reworked
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Table 6 Summary statistics of out-of-sample performance of BCC-IO

Metric Statistics Performance measures

T1 T2 Sen Spe

Euclidean Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1005 0.0000 1.0000 0.8995

SD 0.3017 0.0000 0.0000 0.3017

Standardized Euclidean Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1206 0.0000 1.0000 0.8794

SD 0.3127 0.0000 0.0000 0.3127

Cityblock Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1000 0.0000 1.0000 0.9000

SD 0.3018 0.0000 0.0000 0.3018

Hamming Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Jaccard Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Cosine Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1449 0.0000 1.0000 0.8551

SD 0.3399 0.0000 0.0000 0.3399

Correlation Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1456 0.0000 1.0000 0.8544

SD 0.3399 0.0000 0.0000 0.3399

Mahalanobis Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1039 0.0000 1.0000 0.8961

SD 0.2865 0.0000 0.0000 0.2865

within the best efficiency frontier framework using BCC and SMBmodels. Note that both in-
sample and out-of-sample statistics reported correspond to DEA score-based cut-off points
optimized for each performance measure separately (i.e., T1, T2, Sen, Spe). Note also that
we run tests for several values of the size of the neighborhood k (i.e., 3, 5, 7); however, the
results reported are for k = 3 since higher values delivered very close performances but
required more computations.

With respect to in-sample performance, our results demonstrate that DEA provides an
outstanding classifier regardless of the choices of classification measures and DEAmodels—
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Table 7 Summary statistics of out-of-sample performance of BCC-OO

Metric Statistics Performance measures

T1 T2 Sen Spe

Euclidean Min 0.0000 0.0000 1.0000 0.0074

Max 0.9926 0.0000 1.0000 1.0000

Average 0.0990 0.0000 1.0000 0.9010

SD 0.3021 0.0000 0.0000 0.3021

Standardized Euclidean Min 0.0000 0.0000 1.0000 0.0074

Max 0.9926 0.0000 1.0000 1.0000

Average 0.1650 0.0000 1.0000 0.8350

SD 0.3738 0.0000 0.0000 0.3738

Cityblock Min 0.0000 0.0000 1.0000 0.0074

Max 0.9926 0.0000 1.0000 1.0000

Average 0.0973 0.0000 1.0000 0.9027

SD 0.2954 0.0000 0.0000 0.2954

Hamming Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Jaccard Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Cosine Min 0.0000 0.0000 1.0000 0.0368

Max 0.9632 0.0000 1.0000 1.0000

Average 0.0321 0.0000 1.0000 0.9679

SD 0.1759 0.0000 0.0000 0.1759

Correlation Min 0.0000 0.0000 1.0000 0.0441

Max 0.9559 0.0000 1.0000 1.0000

Average 0.0326 0.0000 1.0000 0.9674

SD 0.1744 0.0000 0.0000 0.1744

Mahalanobis Min 0.0000 0.0000 1.0000 0.0074

Max 0.9926 0.0000 1.0000 1.0000

Average 0.1885 0.0000 1.0000 0.8115

SD 0.3856 0.0000 0.0000 0.3856

see Table 4. In fact, in-sample, DEA does not wrongly classify any non-bankrupt firm as
demonstrated by type II error of 0% and sensitivity of 100%. On the other hand, most
bankrupt firms are properly classified as demonstrated by a very small range (0–0.74%)
and a very small average (0.38%) of type I error, and a very small range (99.26–100%) of
specificity. However, BCC-OO delivers the ideal performance with T1 and T2 being 0% and
sensitivity and specificity being 100%. An additional evidence of the superiority of DEA
over Discriminant Analysis in-sample is provided in Table 5 with differences, for example,
in average performance of 98% on T1 and Spe and 0.26% on T2 and Sen in favor of DEA.
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Table 8 Summary statistics of out-of-sample performance of SBM-IO

Metric Statistics Performance measures

T1 T2 Sen Spe

Euclidean Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0360 0.0000 1.0000 0.9640

SD 0.1821 0.0000 0.0000 0.1821

Standardized Euclidean Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0355 0.0000 1.0000 0.9645

SD 0.1822 0.0000 0.0000 0.1822

Cityblock Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0363 0.0000 1.0000 0.9637

SD 0.1821 0.0000 0.0000 0.1821

Hamming Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Jaccard Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Cosine Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1770 0.0000 1.0000 0.8230

SD 0.3731 0.0000 0.0000 0.3731

Correlation Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1775 0.0000 1.0000 0.8225

SD 0.3732 0.0000 0.0000 0.3732

Mahalanobis Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0355 0.0000 1.0000 0.9645

SD 0.1822 0.0000 0.0000 0.1822

Next, we provide empirical evidence to demonstrate that the proposed out-of-sample
evaluation framework achieved a very high performance in classifying DMUs into the right
risk category—see Tables 6, 7, 8, 9 and 10. In fact, regardless of which DEAmodel is chosen
to compute the scores, the out-of-sample performance of the proposed framework is ideal—
with T1 and T2 being 0% and sensitivity and specificity being 100%—when Hamming and
Jaccard metrics are used to compute the distances between training sample and test sample
observations or DMUs. As to the remaining metrics, they deliver average performances
ranging from −0.05 to 18%. It is worthy to mention however that the choice of SBM-OO
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Table 9 Summary statistics of out-of-sample performance of SBM-OO

Metric Statistics Performance measures

T1 T2 Sen Spe

Euclidean Min 0.0000 0.0000 1.0000 0.9926

Max 0.0074 0.0000 1.0000 1.0000

Average 0.0025 0.0000 1.0000 0.9975

SD 0.0035 0.0000 0.0000 0.0035

Standardized Euclidean Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0353 0.0000 1.0000 0.9647

SD 0.1822 0.0000 0.0000 0.1822

Cityblock Min 0.0000 0.0000 1.0000 0.9853

Max 0.0147 0.0000 1.0000 1.0000

Average 0.0025 0.0000 1.0000 0.9975

SD 0.0040 0.0000 0.0000 0.0040

Hamming Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Jaccard Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Cosine Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1434 0.0000 1.0000 0.8566

SD 0.3404 0.0000 0.0000 0.3404

Correlation Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1446 0.0000 1.0000 0.8554

SD 0.3402 0.0000 0.0000 0.3402

Mahalanobis Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0353 0.0000 1.0000 0.9647

SD 0.1822 0.0000 0.0000 0.1822

and SBM models combined with Euclidean and Cityblock metrics drive the performance of
the proposed framework to an unexpected high level with an average performance of−0.05%
suggesting that the proposed framework fed with the right decisions could even strengthen
in-sample DEA analysis. Once again, the proposed out-of-sample evaluation framework
for DEA proves to be superior to Discriminant Analysis out-of-sample (see Table 5) with
differences, for example, in average performance of 79–98% on T1, 0.26% on T2 and Sen,
and 63–82% on Spe in favor of DEA.
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Table 10 Summary statistics of out-of-sample performance of SBM

Metric Statistics Performance measures

T1 T2 Sen Spe

Euclidean Min 0.0000 0.0000 1.0000 0.9926

Max 0.0074 0.0000 1.0000 1.0000

Average 0.0025 0.0000 1.0000 0.9975

SD 0.0035 0.0000 0.0000 0.0035

Standardized Euclidean Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0554 0.0000 1.0000 0.9446

SD 0.2102 0.0000 0.0000 0.2102

Cityblock Min 0.0000 0.0000 1.0000 0.9853

Max 0.0147 0.0000 1.0000 1.0000

Average 0.0025 0.0000 1.0000 0.9975

SD 0.0040 0.0000 0.0000 0.0040

Hamming Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Jaccard Min 0.0000 0.0000 1.0000 1.0000

Max 0.0000 0.0000 1.0000 1.0000

Average 0.0000 0.0000 1.0000 1.0000

SD 0.0000 0.0000 0.0000 0.0000

Cosine Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1441 0.0000 1.0000 0.8559

SD 0.3401 0.0000 0.0000 0.3401

Correlation Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.1446 0.0000 1.0000 0.8554

SD 0.3402 0.0000 0.0000 0.3402

Mahalanobis Min 0.0000 0.0000 1.0000 0.0000

Max 1.0000 0.0000 1.0000 1.0000

Average 0.0623 0.0000 1.0000 0.9377

SD 0.2312 0.0000 0.0000 0.2312

4 Conclusions

Out-of-sample evaluation is commonly used for validating prediction models of both contin-
uous and discrete variables and testing their performance. The counterpart of this evaluation
framework is lacking in DEA. This paper fills this gap. In fact, we proposed a generic out-
of-sample evaluation framework for DEA and tested the performance of an instance of it
in bankruptcy prediction. The accuracy of our framework, as suggested by our numerical
results, suggests that this tool could prove valuable in industry implementations of DEA
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models in bankruptcy prediction and credit scoring. We also provided empirical evidence
that DEA as a classifier is a real contender to Discriminant Analysis, which is one of the
most commonly used classifiers by practitioners.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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