دانلود رایگان مقاله روش خوشه بندی فازی چند هدفه برای تشخیص تغییر در تصاویر SAR

عنوان فارسی
روش خوشه بندی فازی چند هدفه برای تشخیص تغییر در تصاویر SAR
عنوان انگلیسی
A multiobjective fuzzy clustering method for change detection in SAR images
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E317
رشته های مرتبط با این مقاله
مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
مهندسی نرم افزار و هوش مصنوعی
مجله
محاسبات نرم کاربردی - Applied Soft Computing
دانشگاه
آزمایشگاه های کلیدی ادراک هوشمند و درک تصویر، دانشگاه Xidian، شیان، چین
کلمات کلیدی
تشخیص تغییر تصویر، رادار روزنه ترکیبی، بهینه سازی چند هدفه، الگوریتم تکاملی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


On account of the presence of speckle noise, the trade-off between removing noise and preserving detail is crucial for the change detection task in Synthetic Aperture Radar (SAR) images. In this paper, we put forward a multiobjective fuzzy clustering method for change detection in SAR images. The change detection problem is modeled as a multiobjective optimization problem, and two conflicting objective functions are constructed from the perspective of preserving detail and removing noise, respectively. We optimize the two constructed objective functions simultaneously by using a multiobjective fuzzy clustering method, which updates the membership values according to the weights of the two objectives to find the optimal trade-off. The proposed method obtains a set of solutions with different trade-off relationships between the two objectives, and users can choose one or more appropriate solutions according to requirements for diverse problems. Experiments conducted on real SAR images demonstrate the superiority of the proposed method.

نتیجه گیری

5. Concluding remarks


In this paper, a multiobjective fuzzy clustering method has been proposed for change detection in SAR images. It converted the change detection problem into a MOP by considering the image detail preserving and noise removing as two separate objectives. Inspired by the idea of decomposition, the proposed method decomposed this MOP into a number of scalar problems with different weight values and then updated the membership values of each pixel according to the weight values of subproblems. As a consequence, the proposed MOFCM could obtain a set of solutions with different detail preserving capability and noise removing capability to gain more insights into the change detection problem. Experimental results demonstrated the effectiveness and stability of the MOFCM for images with distinct features. Compared with those existing methods belonging to single objective optimization, MOFCM as a multiobjective optimization method was more suitable for dealing with the conflict between removing noise and preserving detail in the process of SAR images change detection.


بدون دیدگاه