5. Conclusion and further directions
In Section 3, we proved the monotonicity of the numbers Mm n (σ) for a single pattern σ other than 12 ··· k (recall Theorem 3.4) and showed an example of a set Π for which the monotonicity does not hold even though Mm n (Π) tends to infinity. The natural question to ask would be whether we can in general characterize such sets Π for which the monotonicity of columns does not hold even though deg(m, Π) ≥ 1. Based on computing the values Mm n (Π) for small n and various sets Π, it seems to us that these cases are rather rare. In Section 4, we analysed the asymptotic behaviour of the numbers Mm n (Π) for many types of Π in the sense of the degree deg(m, Π). The most natural way to extend this study is to cover the remaining cases. For example, it remains to be shown whether the sets Π that contain permutations with both finite and infinite magnitude obey any general rules. Another open problem is to determine exactly for which sets Π the values Mm n (Π) are eventually equal to zero.