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For a permutation π the major index of π is the sum of 
all indices i such that πi > πi+1. It is well known that the 
major index is equidistributed with the number of inversions 
over all permutations of length n. In this paper, we study 
the distribution of the major index over pattern-avoiding per-
mutations of length n. We focus on the number Mm

n (Π) of 
permutations of length n with major index m, avoiding the 
set of patterns Π.
First we are able to show that for a singleton set Π = {σ}
other than some trivial cases, the values Mm

n (Π) are mono-
tonic in the sense that Mm

n (Π) ≤ Mm
n+1(Π). Our main result 

is a study of the asymptotic behaviour of Mm
n (Π) as n goes 

to infinity. We prove that for every fixed m, Π and n large 
enough, Mm

n (Π) is equal to a polynomial in n and moreover, 
we are able to determine the degrees of these polynomials for 
many sets of patterns.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let Sn be the set of permutations of the letters {1, 2, . . . , n} = [n]. We write a permu-
tation π ∈ Sn as a sequence π1 · · ·πn. A permutation statistic is a function st : Sn → N0.
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For a permutation π, an inversion is a pair of different indices i < j such that πi > πj

and the number of inversions is denoted by inv(π). The number of inversions is the oldest 
and best-known permutation statistic. Already in 1838, Stern [18] proposed a problem 
of how many inversions there are in all the permutations of length n. The distribution 
of the number of inversions was given shortly after that by Rodrigues [14].

However, we will focus on a different well-known permutation statistic in this paper. 
For a permutation π, we say that there is a descent on the i-th position if πi > πi+1. 
The major index of π, denoted by maj(π), is then the sum of the positions where the 
descents occur. The major index statistic is younger than the number of inversions, as it 
was first defined by MacMahon [12] in 1915. Among other results, MacMahon proved its 
equidistribution with the number of inversions by showing that their generating functions 
are equal and started the systematic study of permutation statistics in general. That is 
why we call the statistics equidistributed with the number of inversions Mahonian. Then 
it took a long time before Foata [10] proved the equidistribution by constructing his 
famous bijection. Since then many new Mahonian statistics appeared in the literature, 
most of which are included in the classification given by Babson and Steingrímsson [1]. 
For the actual values of Mahonian statistics’ distribution see the Mahonian numbers 
sequence A008302 [15].

We say that two sequences a1 · · · an and b1 · · · bn are order-isomorphic if the per-
mutations required to sort them are the same. A permutation π contains a pattern σ

if there is a subsequence of π1 · · ·πn order-isomorphic to σ. Otherwise we say that π

avoids the pattern σ. Pattern avoidance is an active area of research in combinatorics 
and although the systematic study of pattern avoidance started relatively recently, there 
is already an extensive amount of literature. A good illustration of an application of 
pattern avoidance in computer science is that stack-sortable permutations are exactly 
the ones avoiding pattern 231, which was proved by Knuth [11].

Let Sn(σ) be the set of permutations of length n avoiding σ and Sn(σ) its cardinality. 
We say that patterns σ and τ are Wilf-equivalent if Sn(σ) = Sn(τ) for every n. For a 
permutation statistic st, we say that patterns σ and τ are st-Wilf-equivalent if there is 
a bijection between Sn(σ) and Sn(τ) which preserves the statistic st. This refinement of 
Wilf equivalence has been extensively studied for short patterns of length 3, see [3,4,8,
13]. A nearly exhaustive classification of Wilf-equivalence and permutation statistics for 
patterns of length 3 was given by Claesson and Kitaev [6]. On the other hand, not much 
is known about permutation statistics and patterns of length 4 and greater. Recently, 
Dokos et al. [7] presented an in-depth study of major index and number of inversions 
including st-Wilf-equivalence. They conjectured maj-Wilf-equivalence between certain 
patterns of length 4, which was proved by Bloom [2]. Another conjecture from Dokos 
et al. concerning maj-Wilf-equivalent patterns of a specific form was partly proved by 
Ge, Yan and Zhang [19].

Claesson, Jelínek and Steingrímsson [5] analysed the inversion number distribution 
over pattern-avoiding classes. Let Ikn(σ) be the number of σ-avoiding permutations with 
length n and k inversions. Claesson et al. studied Ikn(σ) for a fixed k and a single pattern σ
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as a function of n. Our goal is to provide similar analysis for the distribution of major 
index.

For a pattern σ, let Mm
n (σ) be the set of σ-avoiding permutations with length n

and major index m, and let Mm
n (σ) denote its cardinality. For a set of patterns Π, let 

Mm
n (Π) =

⋂
σ∈Π Mm

n (σ) and Mm
n (Π) be its cardinality. Claesson et al. [5] conjectured 

that Ikn(σ) ≤ Ikn+1(σ) for every k, n unless σ is an increasing pattern (i.e., a pattern 
of the form 1 · · · l). In Section 3, we will prove the analogous claim for major index 
by constructing an injective mapping f : Mm

n (σ) → Mm
n+1(σ) for every σ �= 12 · · · l. 

Furthermore, we show that the claim does not hold in general for an arbitrary set of 
multiple patterns.

In Section 4, we focus on the asymptotic behaviour of Mm
n (Π) for a fixed m and Π as 

n goes to infinity. We note that the asymptotic behaviour for the number of inversions 
is known only for sets avoiding a single pattern. In contrast, our results apply to general 
(possibly infinite) set of patterns. It turns out that the values Mm

n (Π) are eventually 
equal to a polynomial in n, which is consistent with the behaviour of Ikn(σ). The natural 
question to ask is how the degrees of these polynomials depend on Π and m.

Let deg(m, Π) be the degree of the polynomial P such that P (n) = Mm
n (Π) for n ≥ n0. 

Similarly, let degI(k, σ) be the degree of the polynomial P such that P (n) = Ikn(σ) for 
n ≥ n0. In the case of the number of inversions, there are just two types of patterns. For 
a pattern σ, we have either degI(k, σ) = k for every k, or there is a constant c such that 
degI(k, σ) = min(k, c). All these results about Ikn(σ) and degI(m, σ) were shown in the 
aforementioned paper by Claesson et al. [5].

However, the situation gets more complicated when dealing with major index. We 
show how deg(m, {σ}) depends on the structure of σ and determine deg(m, Π) for many 
types of Π, including all the cases when Π is a singleton set. There are still patterns σ for 
which deg(m, {σ}) = m, but for many patterns deg(m, {σ}) is a complicated function 
of m which tends to infinity slower than linearly (approximately as 

√
m). Note that there 

are unfortunately sets Π for which we are not able to precisely determine deg(m, Π). In 
these cases, our results provide at least an upper bound.

Finally, we conclude Section 4 by using our results to show that the asymptotic prob-
ability of a random permutation with major index m avoiding Π is either 0 or 1. This 
again corresponds with the number of inversions, where the analogous claim was proved 
for singleton sets of patterns.

2. Preliminaries

In this section, we recall some standard notions related to permutation patterns and 
introduce a simple decomposition of permutations.

Let Sn be the set of permutations of the letters {1, 2, . . . , n} = [n]. A permutation 
σ ∈ Sn will be represented as a sequence of its values σ = σ1σ2 · · ·σn, where σi = σ(i). 
We say that two sequences of integers a1 · · · ak and b1 · · · bk are order-isomorphic if for 
every i, j ∈ [k] we have ai < aj ⇔ bi < bj . For I = {i1 < i2 < · · · < ik} ⊆ [n] and 
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Table 1
The number of 1324-avoiding permutations with a fixed major index. The mth entry in the 
nth row is the value Mm

n (1324), with n starting at 1 and m starting at 0.
1
1 1
1 2 2 1
1 3 4 6 5 3 1
1 4 6 12 16 19 16 15 9 4 1
1 5 8 19 29 45 58 65 73 65 57 39 29 . . .
1 6 10 27 44 76 119 164 212 260 287 299 303 . . .

π ∈ Sn, let π[I] denote the permutation in Sk which is order-isomorphic to the sequence 
πi1πi2 · · ·πik . A permutation π ∈ Sn contains a permutation σ ∈ Sk if there exists an I

such that π[I] = σ. We write σ 
 π to denote this. If π does not contain σ we say that 
π avoids σ. In this context we usually call σ a pattern. Similarly, for a set of patterns 
Π we say that a permutation τ is Π-avoiding if it is σ-avoiding for every σ ∈ Π. For a 
pattern σ let Sn(σ) be the set of all σ-avoiding permutations of length n, and Sn(σ) its 
cardinality. More generally for a set of permutations Π, let Sn(Π) denote the set of all 
Π-avoiding permutations of length n, and Sn(Π) its cardinality.

The descent set of σ ∈ Sn is the set D(σ) = {i | σi > σi+1} and the major index is the 
sum of all its members maj(σ) =

∑
i∈D(σ) i. We will consider the distribution of major 

index over pattern-avoiding permutations.

Definition 2.1. Let Mm
n (σ) denote the set of all σ-avoiding permutations of length n

with major index m, and Mm
n (σ) its cardinality. Similarly let Mm

n (Π) be the set of 
all permutations from Sn(Π) with major index m, and Mm

n (Π) its cardinality. For an 
example of the values Mm

n (σ) for a specific pattern, see Table 1.

3. Monotonicity of columns

In this section, we will focus on the distribution of major index over permutations 
avoiding a single pattern. Observe that each column of Table 1 is weakly increasing from 
top to bottom. In other words, for a fixed major index m the number of 1324-avoiding 
permutations of length n + 1 is at least the number of 1324-avoiding permutations of 
length n. We will show that this claim holds in general for any single pattern σ except 
for the increasing patterns (i.e., the patterns of the form 12 · · · k).

First let us define a simple operation of inserting an element into a permutation. Later 
we will show two elementary properties of this operation.

Definition 3.1. For a permutation π ∈ Sn and k, l ∈ [n + 1], let π[k → l] ∈ Sn+1

be a permutation created by inserting the letter l at the k-th position. In other words 
π[k → l] is the permutation order-isomorphic to the sequence π1 · · ·πk−1

(
l − 1

2
)
πk · · ·πn. 

See Fig. 1.
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Fig. 1. Example of an insertion 23154[3 → 2] = 342165.

We omit proof of the following simple observation as it straightforwardly follows from 
the Definition 3.1.

Lemma 3.2. Let n ∈ N, k, l ∈ [n + 1] and π ∈ Sn(σ). If there is I such that π[k →
l][I] = σ, then k ∈ I.

Lemma 3.3. Let n ∈ N, k, l ∈ [n] and π ∈ Sn. If D(π) ⊆ [k− 1], l ≤ πk and either k = 1
or the sequences πk−1(l− 1

2 ) and πk−1πk are order-isomorphic, then D(π) = D(π[k → l]).

Proof. Observe that π[k → l] restricted to indices other than k is order-isomorphic to π. 
Therefore for every index i < k−1, i ∈ D(π) if and only if i ∈ D(π[k → l]). And since we 
know that all the elements of D(π) are smaller than k, we get D(π[k → l]) ⊆ [k]. We are 
left with the two indices k and k− 1. Observe that k /∈ D(π[k → l]) because l ≤ πk. And 
from the last condition we obtain k − 1 ∈ D(π) if and only if k − 1 ∈ D(π[k → l]). �

Using this insertion and its properties, we can prove the main result of this section.

Theorem 3.4. For every n, m, k ∈ N and σ ∈ Sk with D(σ) �= ∅ we have the inequality 
Mm

n (σ) ≤ Mm
n+1(σ).

Proof. To prove this theorem we will construct an injective mapping f from Mm
n (σ) to 

Mm
n+1(σ). In order to find an image for π ∈ Mm

n (σ) we introduce the following permuta-
tion statistics.

Definition 3.5. For σ ∈ Sn let tail(σ) denote the largest i such that σn+1−iσn+2−i · · ·σn

are all fixed points. We call these elements the tail elements in σ. And similarly let 
slope(σ) be the largest i such that the sequence σn+1−iσn+2−i · · ·σn is strictly increasing. 
See Fig. 2.

Case 1. First we solve the easy case where tail(σ) = 0. We simply extend π by inserting 
the letter n + 1 at the end, i.e.,

f(π) = π[n + 1 → n + 1].
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Fig. 2. The tail and slope statistics of the permutation σ = 4213567.

Fig. 3. Example of a construction from Case 2. Consider a permutation π = 421356, which has slope(π) = 4, 
and suppose we have a pattern σ with tail(σ) = 3. Then f(π) = 5213467.

It is clear that f preserves the descent set, which implies maj(π) = maj(f(π)). Now 
suppose there is I = {i1 < · · · < ik} such that f(π)[I] = σ. Lemma 3.2 implies ik =
n + 1. But that would lead to σk = f(π)[I]k = k which contradicts the assumption that 
tail(σ) = 0.

Case 2. Suppose now that tail(σ) �= 0 and slope(π) ≥ tail(σ). Then we create the image 
of π by expanding the element at the position n + 1 − tail(σ) into two. See Fig. 3.

f(π) = π[t → πt] where t = n + 1 − tail(σ).

Because all the conditions from Lemma 3.3 are met, we get D(π) = D(f(π)) which 
implies maj(π) = maj(f(π)).

Next we want to show that f(π) avoids σ. Suppose there is I = {i1 < · · · < ik} such 
that f(π)[I] = σ. Again from Lemma 3.2 we obtain t = ij ∈ I for some j. Observe that 
since

f(π)t < f(π)t+1 < · · · < f(π)n+1

and t = tail(σ) it follows that f(π)t corresponds to a tail element in σ or is the rightmost 
non-tail element in σ. Since t = ij , it now follows that j ≤ k − tail(σ).
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Fig. 4. Example of a construction from Case 3. Consider a permutation π = 421356, which has slope(π) = 4, 
and suppose we have a pattern σ with tail(σ) > 4. Then f(π) = 5312467.

Now we will use different arguments depending on whether this holds as an equality 
or not. First suppose that j = k − tail(σ). This means that f(π)t corresponds to the 
rightmost non-tail element in σ and f(π)t+1, . . . , f(π)n+1 correspond exactly to the tail 
elements in σ. Then, as f(π)t = f(π)t+1 − 1, it follows that σ has at least n + 2 − t tail 
elements, which is a contradiction to the fact that tail(σ) = n + 1 − t.

Suppose now that j > k − tail(σ) so that the elements

f(π)ij < f(π)ij+1 < · · · < f(π)ik

all correspond to some tail elements and hence fixed points in σ. Next note that because 
tail(σ) = n + 1 − t, there must be an l > t such that l /∈ I. This together with the fact 
that

f(π)t < f(π)t+1 < · · · < f(π)n+1

implies that f(π)[I ′] = σ where I ′ = I∪{l} \{t}. As t /∈ I ′, this implies that π contains σ, 
a contradiction.

Case 3. Finally, suppose that tail(σ) �= 0 and slope(π) < tail(σ). Then we simply insert 
the letter 1 at the rightmost possible position without creating a new descent. See Fig. 4.

f(π) = π[n + 1 − slope(π) → 1].

As before, we obtain maj(π) = maj(f(π)) from Lemma 3.3. If there is I = {i1 <

· · · < ik} such that f(π)[I] = σ, then Lemma 3.2 implies n +1 −slope(π) = ij for some j. 
The j-th letter of σ must be its minimum since f(π)ij = 1 is the minimum of f(π). On 
the other hand, because n + 1 − slope(π) > n + 1 − tail(σ) and D(σ) �= ∅, there must 
be q such that σq < σj , which yields a contradiction.

The only remaining part is to show that f is injective. Suppose there are π1 �= π2 such 
that f(π1) = f(π2). From the properties of f(π1) we can tell unambiguously whether it 
was obtained through Case 1, 2 or 3. And following the definitions of f in these particular 
cases it is clear that necessarily π1 = π2. �
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Table 2
The number of permutations avoiding Π = {3412, 1324} with a fixed major index. The mth 
entry in the nth row is the value Mm

n (Π), with n starting at 1 and m starting at 0. The 
problematic values are highlighted.

1
1 1
1 2 2 1
1 3 3 6 5 3 1
1 4 3 9 12 16 12 15 9 4 1
1 5 3 13 12 21 38 31 48 41 44 29 29 . . .
1 6 3 18 13 20 49 62 63 105 95 109 162 . . .
1 7 3 24 14 21 62 62 105 105 221 169 222 . . .

In Theorem 3.4, the assumption D(σ) �= ∅ is necessary, because in the case of a pattern 
σ = 12 · · · k and fixed m ∈ N there is n0 ∈ N such that for every n larger than n0 we have 
Mm

n (σ) = 0. This follows directly from the Erdős–Szekeres theorem [9], which states that 
any permutation of length n > m(k − 1) + 1 contains either the increasing pattern of 
length k or the decreasing pattern of length m + 1, forcing the major index to be larger 
than m.

Applying a similar argument as in the proof of Theorem 3.4, we could show that 
Mm

n (Π) ≤ Mm
n+1(Π) for any set of patterns with the same tail which does not contain 

any increasing pattern. One could think that indeed for any set of patterns the columns 
are either eventually zero or weakly increasing. But this is not true even for small sets 
of short patterns. For example, consider a set Π = {3412, 1324} of just two patterns. 
In this case M5

6 (Π) = M5
8 (Π) = 21 and M5

7 (Π) = 20 (see Table 2). But we can easily 
show that Mm

n (Π) tends to infinity for m ≥ 3. Let π(n) = 12 · · · (n − 2)[m − 1 → 1] and 
π(n, k) = π(n)[1 → k], then π(n, k) ∈ Mm

n (Π) for n ≥ m and k > 2. Therefore, Mm
n (Π)

tends to infinity as n → ∞ since Mm
n (Π) ≥ n − 2.

4. Asymptotic behaviour

We have seen that for most single patterns the inequality Mm
n (σ) ≤ Mm

n+1(σ) holds 
(recall Theorem 3.4). Let us now focus on the asymptotic behaviour of Mm

n (σ) for a 
fixed m as n tends to infinity. More generally, we are interested in the asymptotic be-
haviour of Mm

n (Π) for a (possibly infinite) set of permutations Π.
First, let us introduce a useful decomposition of permutations. Let Nd

0 be the set of 
d-tuples of non-negative integers and for every a ∈ N

d
0 define its size |a| =

∑d
i=1 ai. We 

will decompose an arbitrary permutation into a smaller permutation of length k and a 
composition of n − k into k + 1 parts.

Definition 4.1. Let π ∈ Sn be a permutation and k ∈ [n] such that the sequence 
πk+1 · · ·πn is strictly increasing. Let σ be the permutation order-isomorphic to the se-
quence π1 · · ·πk and a ∈ N

k+1
0 the only (k + 1)-tuple of size |a| = n − k such that 

πi = σi +
∑σi

j=1 aj holds for every i ∈ [k]. Then we say that π can be decomposed into σ
and a, denoted by π = σ · a.
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Fig. 5. For a permutation σ = 132 and 4-tuple a = (2, 3, 0, 1) we have π = σ · a = 387124569.

We can also look at the decomposition from the other side as an operation, which 
increases the vertical gaps between the letters of σ and then fills them with increasing 
suffix. See Fig. 5.

Definition 4.2. For a permutation π that can be expressed as π = γ · a for some γ ∈ Sk

and a ∈ N
k+1
0 , we call γ the core of π and a the padding profile of π if k is the last descent 

of π. In other words, π = γ ·a is a decomposition into a core and a padding profile of π if 
there is i ≤ γk such that ai > 0. For π = 12 · · ·n, the core of π is the empty permutation 
and its padding profile is a = n.

Observe that the major index of a permutation π is determined only by its core. There-
fore, let us define the following statistic which characterizes the cores of permutations 
with a given major index.

Definition 4.3. For a permutation π, let the extended major index of π, denoted by 
maj+(π), be the sum of its major index and its length, i.e.,

maj+(π) = |π| + maj(π).

For every permutation π with a core γ, we have maj(π) = maj+(γ). Moreover for 
any π, if π contains σ, then maj+(π) ≥ maj+(σ).

As we already noticed, a permutation is uniquely determined by its core and its 
padding profile while its major index is determined only by the core. Furthermore, for 
any permutation τ ∈ Mm

n (Π) all the elements of D(τ) are smaller than m + 1, thus 
making the core of any such permutation shorter than m + 1. This means that all the 
permutations with major index m have only a finite number of unique cores.

Definition 4.4. Let C(m, Π) denote the finite set of all the distinct cores of permutations 
from Mm(Π), where Mm(Π) the set of all Π-avoiding permutations with major index m, 
i.e., Mm(Π) =

⋃
n≥1 M

m
n (Π).
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Note that every core γ ∈ C(m, Π) satisfies maj+(γ) = m (recall Definition 4.3).

Definition 4.5. For γ ∈ C(m, Π), let M[γ]
n (Π) be the set of permutations from Mm

n (Π)
which have the core γ, and let M [γ]

n (Π) be its cardinality.

Clearly Mm
n (Π) =

∑
γ∈C(m,Π) M

[γ]
n (Π). This means that in order to prove the polyno-

mial behaviour of Mm
n (Π) for a fixed m, it is enough to prove the polynomial behaviour 

of M [γ]
n (Π) for a fixed core γ. And because the decomposition of a permutation into its 

core and its padding profile is unique, we can enumerate M[γ]
n (Π) by counting all the 

possible padding profiles.

Lemma 4.6. Let Π be any set of permutations and γ ∈ Sk a permutation. Then there 
exists a polynomial P and an integer n0 such that for every n ≥ n0, M [γ]

n (Π) = P (n).

Proof. We will use a known property of down-sets of integer compositions. Define a 
partial order ≤ on Nd

0 as (a1, . . . , ad) ≤ (b1, . . . , bd) if for every i ∈ [d] we have ai ≤ bi. 
A set A ⊆ N

d
0 is a down-set in Nd

0 if for every a ∈ A and b ≤ a, b belongs to A as well. 
Unfortunately the set of all padding profiles from M[γ]

n (Π) is not a down-set, but we can 
express it as a difference of two down-sets. Define the following sets

An = {a | a ∈ N
k+1
0 ∧ γ · a ∈ Sn(Π)} and A =

⋃
n≥0

An

Bn = {a | a ∈ An ∧ ∀i ≤ γk : ai = 0} and B =
⋃

n≥0
Bn.

Let us check that both A and B are down-sets in Nk+1
0 . If a belongs to A and b ≤ a, 

then the permutation γ · a contains the permutation γ · b and therefore γ · b must be 
Π-avoiding and b belongs to A. To show that B is down-set, consider a ∈ B and b ≤ a. 
We know from previous argument that b also belongs to A and the second condition 
holds since for every i ∈ [γk] we have bi ≤ ai = 0 implying bi = 0.

The padding profiles of permutations from M[γ]
n (Π) have at least one of the first γk

values positive, because such permutation has a descent at the k-th position. But these 
are exactly the tuples which belong to An but not to Bn. Since Bn is a subset of An we 
get M [γ]

n (Π) = |An| − |Bn|. To complete the proof, we will use the following fact due to 
Stanley [16,17].

Proposition 4.7 (Stanley). Let d be a positive integer and let S be a down-set in Nd
0. Let 

H(n) be the number of elements of S with size n. Then there exists a polynomial P and 
an integer n0 such that for every n ≥ n0, H(n) = P (n).

From this fact, we obtain that |An| and |Bn| are both polynomials for sufficiently 
large n, therefore M [γ]

n (Π) is eventually equal to a polynomial as well. �
Corollary 4.8. For a set of permutations Π and m ∈ N0, there exists a polynomial P
and an integer n0 such that for every n ≥ n0, Mm

n (Π) = P (n).
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Since we now know that the numbers Mm
n (Π) are eventually equal to a polynomial, 

we can introduce the following notation.

Definition 4.9. For a set of permutations Π, let deg(m, Π) be the degree of the poly-
nomial P such that Mm

n (Π) = P (n) for n large enough. For a zero polynomial P , let 
deg(m, Π) = 0.

Observe that for an arbitrary set of permutations Π and Ω ⊆ Π, it follows that 
deg(m, Π) ≤ deg(m, Ω). This holds since any Π-avoiding permutation is trivially 
Ω-avoiding too.

Now we would like to know how these degrees depend on m and on the structure of 
permutations in Π. It turns out that there is one important statistic of patterns which 
affects the degree deg(m, Π).

Definition 4.10. For a permutation π we will define the magnitude of π as

mg(π) =

⎧⎪⎪⎨
⎪⎪⎩

0 if D(π) = ∅
k if D(π) = {k}
+∞ if |D(π)| ≥ 2.

For a set of permutations Π the magnitude of Π, denoted by mg(Π), is the minimal 
magnitude of a permutation σ ∈ Π. For the empty set of patterns, mg(∅) = +∞.

Let us make an important observation about magnitude. If a permutation π contains 
a pattern σ then necessarily mg(π) ≥ mg(σ).

As we will show, the magnitude of Π plays a key role in determining the value of 
deg(m, Π). To prove this, let us first focus on the sets Π of infinite magnitude. In this 
particular case, we can also determine the leading coefficient of the polynomial Mm

n (Π), 
which will prove to be useful later.

Proposition 4.11. Let Π be a set of permutations with mg(Π) = +∞. Then deg(m, Π) =
m and Mm

n (Π) = nm

m! + O(nm−1) as n → ∞.

Proof. First observe that for m = 0 the proposition simply states that M0
n(Π) = 1 for 

n ≥ n0. But that is clear since M0
n(Π) = M0

n(∅) = {12 · · ·n}. Therefore, in the rest of 
the proof suppose that m ≥ 1.

In order to prove our proposition, it is sufficient to prove the following claims.

1. For the core ε = 12 · · ·m we have M [ε]
n (Π) = nm

m! + O(nm−1).
2. For every γ ∈ C(m, Π) \ {ε} there is a constant β = β(γ, m, Π) such that M [γ]

n (Π) ≤
βnm−1.
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To prove the first claim, simply observe that any permutation with the core ε has a 
finite magnitude, which makes it Π-avoiding. By choosing the first m letters we uniquely 
get every permutation with the core ε plus the permutation 12 · · ·n. That gives us the 
desired enumeration M [ε]

n (Π) =
(
n
m

)
− 1 = nm

m! + O(nm−1).
To prove the second claim, fix a core γ ∈ C(m, Π) \{ε} of length k. First observe that 

for γ �= ε necessarily k ≤ m − 1. We will bound M [γ]
n (Π) from above by the number of 

all the permutations of length n which can be expressed as γ · a for some tuple a. This 
yields the upper bound M [γ]

n (Π) ≤
(
n
k

)
≤

(
n

m−1
)
≤ βnm−1 for some β. Note that the 

second inequality holds only for n ≥ 2(m − 1).
These claims together with Corollary 4.8 give the desired polynomial behaviour. �
Let us now focus on the problem of determining deg(m, Π) for a set Π of finite magni-

tude. As we will show in this section, the asymptotic behaviour of these sets is far more 
complicated than that of sets with infinite magnitude. Our main result is providing the 
values deg(m, Π) as a function of m. As in Proposition 4.11, we will construct a suitable 
core and bound deg(m, Π) from below by counting all the possible padding profiles. On 
the other hand, we will use a different approach for obtaining the upper bound. For a 
fixed core γ, we will bound M [γ]

n (Π) in terms of how many coordinates of a padding 
profile a can be large if γ · a avoids Π.

Lemma 4.12. Let Π be a finite set of permutations and let m and l be non-negative 
integers. If every permutation π with maj+(π) ≤ m and length |π| > l contains a core 
of some permutation in Π, then deg(m, Π) ≤ l.

Proof. Let k be the length of the longest permutation in Π. We will prove the claim 
by showing that for every γ ∈ C(m, Π) there is a constant α = α(γ, m, Π) such that 
M

[γ]
n (Π) ≤ αnl.
Fix a core γ ∈ C(m, Π). For a padding profile a ∈ N

d
0 we will say that its coordinate ai

is bad if ai > k. We claim that every permutation in M [γ]
n (Π) has a padding profile with 

at most l + 1 bad coordinates. Suppose for a contradiction that there is a permutation 
π ∈ M

[γ]
n (Π) with at least l + 2 bad coordinates in its padding profile. Let ψ be the 

permutation order-isomorphic to l + 1 elements from the core of π which separate the 
l + 2 bad coordinates. Because ψ is contained in the core it satisfies maj+(ψ) ≤ m. But 
since it has length greater than l it must contain a core κ of some permutation σ ∈ Π. 
Furthermore, let p ∈ N

l+2
0 be the tuple of only the l+2 bad coordinates from the padding 

profile of π. Observe that since ψ contains κ and every coordinate of p is larger than |σ|
then ψ · p must contain σ. But that is clearly a contradiction because ψ · p is contained 
in π.

Now it suffices to show that the number of permutations with core γ and at most l+1
bad coordinates is smaller than αnl for some α. Let d be the length of the core γ. First we 
have 

(
d+1
l+1

)
ways to choose the l+1 potentially bad coordinates. We have only constantly 

many options for the remaining d − l coordinates of the padding profile, which we can 
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bound with (k + 1)d−l. Finally, we bound the number of ways to split the remaining 
elements into the bad coordinates by 

(
n+l
l

)
, i.e., the number of ways to distribute n

elements among l + 1 boxes.
This yields the upper bound M [γ]

n (Π) ≤ (k + 1)d−l
(
d+1
l+1

)(
n+l
l

)
and since the only 

non-constant factor is 
(
n+l
l

)
, this indeed implies M [γ]

n (Π) ≤ αnl for some α. �
In the next lemma, we show that Lemma 4.12 along with the Erdős–Szekeres theo-

rem [9] gives us a precise characterization of the sets Π for which the degrees deg(m, Π)
are bounded by a constant independent of m. This illustrates that sets of patterns con-
taining permutations with both finite and infinite magnitude can behave sporadically.

Proposition 4.13. For a set of permutations Π, deg(m, Π) is bounded by a constant 
independent of m, if and only if there is σ ∈ Π with the core 12 · · · k and τ ∈ Π with the 
core l(l − 1) · · · 1 for some k and l.

Proof. To prove one implication, assume that Π contains such σ and τ . We know that 
deg(m, Π) ≤ deg(m, {σ, τ}). From the Erdős–Szekeres theorem [9], it follows that every 
permutation longer than (l− 1)(k− 1) contains either 12 · · · k or l(l − 1) · · · 1. Therefore, 
we obtain the inequality deg(m, Π) ≤ (k − 1)(l − 1) from Lemma 4.12.

We will prove the other implication by proving its contrapositive. Assume that Π does 
not contain any permutation with an increasing core. In other words mg(Π) = +∞ and 
Proposition 4.11 implies that deg(m, Π) = m. Therefore, deg(m, Π) is unbounded.

Finally, assume that Π does not contain any permutation with a decreasing core. In 
this case we cannot precisely express deg(m, Π). However, if m = d2+d

2 for some integer d, 
then every permutation with the core d(d −1) · · · 1 is Π-avoiding and has major index m. 
Since there are

(
n−1
d

)
such permutations of length n, we get the inequality deg(m, Π) ≥ d. 

And again deg(m, Π) is unbounded. �
Now we will focus on determining the values deg(m, Π) for sets Π of finite magnitude. 

As we already discussed in Section 3, for any set of permutations Π with magnitude 0, 
we have Mm

n (Π) = 0 for n ≥ n0. It is not hard to show that the values eventually get 
constant in the case of sets with magnitude 1.

Proposition 4.14. If Π is a set of permutations with magnitude mg(Π) = 1, then 
deg(m, Π) = 0.

Proof. We know that deg(m, Π) ≥ 0 for every m and Π. Therefore, it is sufficient 
to bound deg(m, Π) from above. Fix a permutation τ ∈ Π with magnitude 1. Since 
deg(m, Π) ≤ deg(m, {τ}) and every non-empty permutation contains the pattern 1, we 
get deg(m, Π) ≤ 0 directly from Lemma 4.12. �

The next result determines deg(m, Π) for all sets of permutations of magnitude at 
least 3 where every permutation has a finite magnitude.
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Theorem 4.15. Let Π be a set of permutations such that every permutation σ ∈ Π has a 
finite magnitude and mg(Π) = k, where k is an integer larger than 2. Then deg(0, Π) = 0
and for m ≥ 1

deg(m,Π) =
⌊

(d− 1)(k − 1)
2 + m

d

⌋
where d =

⌈
1
2

(
−1 +

√
1 + 8m

k − 1

)⌉
.

Proof. Any permutation σ with major index 0 is strictly increasing, therefore σ avoids 
Π and M0

n(Π) = 1 = n0. In the rest of the proof suppose m ≥ 1.
We will prove the theorem by showing that the following values are equal.

1. The value l1 = deg(m, Π).
2. The largest integer l2 such that there is a 12 · · ·k-avoiding permutation σ of length l2

satisfying maj+(σ) ≤ m.
3. The largest integer l3 such that there is a 12 · · · k-avoiding permutation π of length 

l3 satisfying maj+(π) = m.
4. The value l4 =

⌊
(d−1)(k−1)

2 + m
d

⌋
, where d =

⌈
1
2

(
−1 +

√
1 + 8m

k−1

)⌉
.

First observe that l2 is well defined as the condition holds for the empty permutation 
and l2 ≤ m. Also if l3 is well defined then trivially l2 ≥ l3. We will start by proving 
that l3 exists and l3 ≥ l4 by constructing a 12 · · · k-avoiding permutation π of length l4
satisfying maj+(π) = m.

A run of a permutation ψ is a contiguous subsequence of letters of the form a, a +1, a +
2, . . . , a + t. For a permutation ψ ∈ Sn we say that ψ is co-layered if ψ is a concatenation 
of runs such that the first letters of all the runs are in descending order. Observe that 
any co-layered permutation is uniquely determined by its descent set and the longest 
increasing subsequence in any co-layered permutation is its longest run. Therefore every 
co-layered permutation with all its runs shorter than k avoids 12 · · · k. Our goal is to 
construct such co-layered core with extended major index m and length l4.

For m = d2+d
2 (k − 1) we can simply use the co-layered permutation consisting of d

runs, each having exactly k− 1 letters. In the general case we will construct a co-layered 
permutation π with all runs of length k − 1 except for at most two shorter ones. First 
we will determine the number of its runs d. Let d be the smallest number such that 
the co-layered permutation σ, which has d runs of length k − 1, satisfies maj+(σ) ≥ m. 
Trivially, d is the positive integer such that

d2 − d

2 (k − 1) < m ≤ d2 + d

2 (k − 1). (1)

Now we will determine how short the first run of π can be without making the ex-
tended major index too small. Let s be the largest number such that the co-layered 
permutation π, which has a run of length k−1 −s followed by d −1 runs of length k−1, 
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Fig. 6. The constructed co-layered permutation for m = 15 and k = 3. In this case we get d = 4, s = 1 and 
p = 1.

still satisfies maj+(π) ≥ m. Note that s < k − 1 since s ≥ k − 1 would contradict the 
choice of d. Equivalently, s is the non-negative integer such that

d2 + d

2 (k − 1) − d(s + 1) < m ≤ d2 + d

2 (k − 1) − ds. (2)

Let p = d2+d
2 (k− 1) − ds −m and observe that p < d because p ≥ d would contradict 

the inequality (2). Finally, let π be a co-layered permutation of length ed with the descent 
set D(π) = {e1, e2, . . . , ed−1}, where

ei =
{
i(k − 1) − s for 1 ≤ i ≤ d− p

i(k − 1) − s− 1 for d− p < i ≤ d.

To see that π is correctly defined, we will show that the ei are strictly increasing and 
positive. From the inequalities s < k − 1 and k ≥ 3, it follows that e1 ≥ 1, and that 
ei+1 > ei for every index i. For an example of the construction see Fig. 6. Note that this 
is where the proof would fail for sets with magnitude k = 2, since for p �= 0 we would 
have ed−p = ed−p+1 and we could not construct such permutation.

For any i ∈ [d − 1] we have ei+1 − ei ≤ k − 1 and e1 ≤ k − 1. Therefore π avoids 
12 · · · k and we see that π satisfies

maj+(π) =
d∑

i=1
ei = d2 + d

2 (k − 1) − ds− p = m.

Furthermore, we will show that π has length l4. By solving the inequalities (1) and 
(2) we get

d =
⌈

1
2

(
−1 +

√
1 + 8m

k − 1

)⌉
, s =

⌊
(d + 1)(k − 1)

2 − m

d

⌋
.

Notice that we subtract 1 during the calculation of ed if and only if p �= 0 which 
happens precisely when (d+1)(k−1)

2 − m
d is not an integer. This justifies the following 

equation
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ed = d(k − 1) −
⌈

(d + 1)(k − 1)
2

− m

d

⌉
=

⌊
(d− 1)(k − 1)

2
+ m

d

⌋
= l4.

In order to prove l4 ≥ l2 and thus establishing that l2 is well defined, let τ be 
a 12 · · · k-avoiding permutation with length t ≥ l4 + 1. Because τ avoids 12 · · · k
there has to be a descent in the sequence τt−(k−1) · · · τt, another one in the sequence 
τt−2(k−1) · · · τt−(k−1) and so on. But that leads to the following inequality

maj+(τ) ≥ t +
i(k−1)<t∑

i=1
(t− i(k − 1)) > ed +

d−1∑
i=1

ei = m.

So far we have proved the equality l2 = l3 = l4. Now we will show that l1 ≥ l3. Let π be 
a longest 12 · · · k-avoiding permutation with extended major index m. Observe that any 
permutation with core π avoids Π and has major index m. We will bound M [π]

n (Π) from 
below with the number of such permutations which have its minimum on the position 
l3 + 1. We can arbitrarily choose l3 letters, which will form the core, from all letters 
except the letter 1. That gives us the lower bound Mm

n (Π) ≥ M
[π]
n (Π) ≥

(
n−1
l3

)
≥ αnl3

for some constant α.
Finally, we complete the proof by showing that l2 ≥ l1. Fix a permutation τ ∈ Π so 

that mg(π) = k. Trivially the inequality deg(m, Π) ≤ deg(m, {τ}) holds. And because 
every permutation ψ with maj+(ψ) ≤ m and length greater than l2 contains 12 · · · k, we 
get the desired upper bound from Lemma 4.12. �

Notice that for m ≤ k − 1 we obtain from Theorem 4.15 that d = 1 and deg(m, Π) =
deg(m, ∅) = m. On the other hand for m ≥ k the degree is strictly smaller than m and 
behaves approximately as 

√
m.

As suggested by Proposition 4.13, the claim from Theorem 4.15 does not hold for the 
sets Π containing permutations with both finite and infinite magnitude. Similar claims 
also cannot hold in general for the sets of magnitude 2. Consider the set Π = {132, 231}
of magnitude 2 and σ ∈ Sn(Π). Let j be an integer such that σj = 1. Then the sequence 
σ1σ2 · · ·σj is decreasing since σ avoids 231 and similarly the sequence σjσj+1 · · ·σn

is increasing because σ avoids 132. In other words, every Π-avoiding permutation has 
a decreasing core. On the other hand, every permutation π with the decreasing core 
(d − 1)(d − 2) · · · 1 avoids Π and maj(π) = d2+d

2 . As a result, deg(m, Π) �= 0 if and only 

if m can be expressed as m = d2+d
2 for some integer d. Therefore, unlike what we have 

seen so far, the degrees in this case do not satisfy deg(m, Π) ≤ deg(m + 1, Π).
However, we can prove a weaker version of Theorem 4.15 by placing some further 

restrictions on the set Π of magnitude 2.

Proposition 4.16. Let Π be a set of permutations such that every permutation σ ∈ Π has 
a finite magnitude and mg(Π) = 2. Furthermore, assume that there is i ∈ {1, 2, 3} such 
that every permutation π ∈ Π with mg(π) = 2 has a padding profile a ∈ N

3
0 with ai �= 0. 

Then deg(m, Π) = �−1+
√

1+8m�.
2
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Fig. 7. The constructed cores for m = 15, from left to right for i = 1, 2, 3. Any permutation with such core 
and no element in the grey strip is Π-avoiding.

Proof. Let l be the largest integer such that l
2+l
2 ≤ m. By solving the quadratic equation, 

we get l = �−1+
√

1+8m
2 �. Again to show that the degree of the polynomial is equal to l, 

we will prove the following claims.

1. There is a constant α = α(m, k) such that Mm
n (Π) ≥ αnl.

2. The inequality deg(m, Π) ≤ l holds.

We will construct a core γ for which M [γ]
n (Π) ≥ αnl holds. If we have m = l2+l

2 we 
will take as a core the descending permutation of length l. Every permutation with this 
core is Π-avoiding and has major index m, thus giving the desired lower bound.

Otherwise let d = m − l2+l
2 . Observe that d ≤ l, because otherwise l

′2+l′

2 ≤ m would 
hold for l′ = l + 1. Now we will construct a core of length l + 1 depending on the 
i ∈ {1, 2, 3}, for which the assumptions of the proposition hold. Let ε = l · · · 1, then we 
will construct the core γ by inserting one letter to ε,

γ =

⎧⎪⎪⎨
⎪⎪⎩
ε[l + 1 − d → 1] for i = 1
ε[l + 1 − d → d] for i = 2
ε[l + 2 − d → l + 1] for i = 3.

For an example see Fig. 7. Observe that γ no longer avoids 12, but it satisfies 
maj+(γ) = m. Let a ∈ N

l+2
0 be a tuple which satisfies one of the following conditions 

depending on the value of i.

a1 = 0 , a2 �= 0 for i = 1

ad+1 = 0 , a1 �= 0 for i = 2

al+2 = 0 , a1 �= 0 for i = 3

We know that γ · a has major index m and does not contain any permutation with 
magnitude larger than 2. But it also cannot contain any permutation σ ∈ Π with magni-
tude 2 because of the conditions above. Therefore γ · a ∈ Mm

n (Π). Since there are 
(
n−2
l

)
such padding profiles, we see that M [γ]

n (Π) ≥ αnl for some α.
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To prove our second claim, fix a permutation τ ∈ Π with magnitude 2. Observe that 
any permutation σ with length at least l + 1 for which maj+(σ) ≤ m holds, necessarily 
contains 12. Therefore, the upper bound deg(m, Π) ≤ l is implied by Lemma 4.12. �

As one would expect the formula for deg(m, Π) in Proposition 4.16 gives the same 
result as the one in Theorem 4.15 for k = 2. It is straightforward to check if you express m
as m = t2+t

2 + s for some integer t and s ≤ t.
From Propositions 4.11, 4.14, 4.16 and Theorem 4.15 we know the values of deg(m, Π)

for all sets Π with |Π| = 1 and mg(Π) ≥ 1. Furthermore, as we already know, for any 
permutation σ with magnitude 0, we eventually have Mm

n (σ) = 0.

Corollary 4.17. For a singleton set Π = {σ} and k = mg(Π) = mg(σ)

deg(m,Π) =

⎧⎪⎪⎨
⎪⎪⎩
m if k = +∞
0 if k ≤ 1 or m = 0
sk(m) otherwise

where sk(m) =
⌊

(d−1)(k−1)
2 + m

d

⌋
and d =

⌈
1
2

(
−1 +

√
1 + 8m

k−1

)⌉
. Furthermore, 

deg(m, Π) = m for m < k and otherwise deg(m, Π) < m.

Proof. Since the values of deg(m, Π) were determined in the previous claims, we will 
only prove the inequalities. It is easier to use bounds on deg(m, Π) than to work with 
the equations for sk(m). Let ε = 12 · · ·m. For m < k every permutation with core ε avoids 
Π and M [ε]

n (Π) = M
[ε]
n (∅) ≥ αnm for some constant α. Thus sk(m) = deg(m, Π) = m.

On the other hand, for m ≥ k every permutation π such that maj+(π) ≤ m and 
|π| ≥ m contains 12 · · · k (in fact ε is the only such permutation). And Lemma 4.12
implies sk(m) = deg(m, Π) ≤ m − 1. �

Moreover, for an arbitrary set of permutations Π we can use Corollary 4.17 to provide 
an upper bound on deg(m, Π). Let τ ∈ Π such that mg(τ) = mg(Π), then deg(m, Π) ≤
deg(m, {τ}).

Our previous results in this chapter imply a sharp dichotomy for the probability that 
a random permutation with a fixed major index avoids a specific set of patterns Π.

Theorem 4.18. Let Π be a set of permutations and m a non-negative integer. Then

lim
n→∞

Mm
n (Π)

Mm
n (∅) =

{
1 if m < mg(Π)
0 otherwise.

Proof. First notice that directly from Proposition 4.11, it follows that Mm
n (∅) = nm

m! +
O(nm−1). For m < mg(Π) every permutation with core ε = 12 · · ·m avoids Π. As we 
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already showed in the proof of Proposition 4.11, M [ε]
n (Π) = nm

m! + O(nm−1). Therefore, 
the ratio is approaching 1 as n goes to infinity.

For m ≥ mg(Π), we know that deg(m, Π) < m (recall Corollary 4.17). Therefore, the 
polynomial in the numerator has smaller degree than the one in the denominator and 
the ratio is approaching 0 as n goes to infinity. �
5. Conclusion and further directions

In Section 3, we proved the monotonicity of the numbers Mm
n (σ) for a single pattern σ

other than 12 · · · k (recall Theorem 3.4) and showed an example of a set Π for which the 
monotonicity does not hold even though Mm

n (Π) tends to infinity. The natural question 
to ask would be whether we can in general characterize such sets Π for which the mono-
tonicity of columns does not hold even though deg(m, Π) ≥ 1. Based on computing the 
values Mm

n (Π) for small n and various sets Π, it seems to us that these cases are rather 
rare.

In Section 4, we analysed the asymptotic behaviour of the numbers Mm
n (Π) for many 

types of Π in the sense of the degree deg(m, Π). The most natural way to extend this 
study is to cover the remaining cases. For example, it remains to be shown whether 
the sets Π that contain permutations with both finite and infinite magnitude obey any 
general rules. Another open problem is to determine exactly for which sets Π the values 
Mm

n (Π) are eventually equal to zero.
One could also focus on generalized pattern avoidance. A permutation σ contains a 

copy of a generalized pattern π if it contains π and certain elements of the diagram of the 
copy are adjacent either horizontally or vertically. The concept of generalized patterns 
was introduced by Babson and Steingrímsson [1]. The reason they are interesting is 
because many statistics on permutations (including the number of inversions and the 
major index) can be expressed as a linear combination of the number of occurrences of 
these generalized patterns.

Finally, similar analysis of the distribution could be done for other permutation statis-
tics like number of descents or number of exceedances. As previously mentioned, the 
number of inversions was already covered by Claesson, Jelínek and Steingrímsson [5]. 
One can find examples of various other pattern statistics in a classification given by 
Babson and Steingrímsson [1].
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