منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله فرمول بندی المان محدود ضمنی نظریه زنجیره مولتی رزولوشن

عنوان فارسی
فرمول بندی المان محدود ضمنی نظریه زنجیره مولتی رزولوشن
عنوان انگلیسی
Implicit finite element formulation of multiresolution continuum theory
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
17
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E773
رشته های مرتبط با این مقاله
مهندسی مکانیک
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
دانشگاه لولئو، ایالات متحده آمریکا
کلمات کلیدی
تئوری زنجیره مولتی رزولوشن، روش المان محدودف خسارت، بومی سازی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


The multiresolution continuum theory is a higher order continuum theory where additional kinematic variables account for microstructural inhomogeneities at several distinct length scales. This can be particularly important for localization problems. The strength of this theory is that it can account for details in the microstructure of a material without using an extremely fine mesh. The present paper describes the implementation and verification of a 3D elastic–plastic multiresolution element based on an implicit time stepping algorithm. It is implemented in the general purpose finite element program FEAP. The mesh independency associated with the length scale parameter is examined and the convergence rate of the element is also evaluated.

نتیجه گیری

7. Conclusions and discussion


• The implementation of an implicit MRCT element into FEAP has been verified. It is a general formulation for higher order continuum theory and can accommodate several other types of formulations. It can accommodate multiple scales, as shown in the works by Liu and coworkers. • The merit of the implicit MRCT element compared to the explicit version is that no dynamic vibrations show up when modeling quasistatic problems. • The element shows second order convergence in the equilibrium iterations verifying the formulation of the element tangent matrix.• The element can be used to obtain mesh independent results in the case of deformation localization when choosing an appropriate length scale associated with the microdomain. The mesh needs to be refined to fully resolve the length scale. • The length scale of the microdomain should be related to the physics of the problem at hand. However, it can also be used as a numerical regularization parameter to obtain mesh independent results. It is not obvious how to calibrate the constitutive behavior of the microdomain. One can note from the evaluations above that the used properties must be related to the chosen length scale. In future work, the implicit MRCT element will be applied to the problem of fracturing of high strength steels where the constitutive behavior need to be addressed more in detail.


بدون دیدگاه