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Highlights

• The implementation of an implicit MRCT element into FEAP has been verified.
• Second order convergence in the equilibrium iterations is obtained.
• Mesh independent results in the case of deformation localization can be obtained.
• The element gives no dynamics for quasistatic cases in contrast to the explicit version.

Abstract

The multiresolution continuum theory is a higher order continuum theory where additional kinematic variables account for
microstructural inhomogeneities at several distinct length scales. This can be particularly important for localization problems. The
strength of this theory is that it can account for details in the microstructure of a material without using an extremely fine mesh. The
present paper describes the implementation and verification of a 3D elastic–plastic multiresolution element based on an implicit
time stepping algorithm. It is implemented in the general purpose finite element program FEAP. The mesh independency associated
with the length scale parameter is examined and the convergence rate of the element is also evaluated.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Multiresolution Continuum Theory (MRCT) developed by Liu and his coworkers [1] has been applied to
study the void nucleation, growth and coalescence for steels [2–4] and a WC-Co composite [3,5]. The zig-zag ductile
fracture profile has also been captured by a hybrid multiresolution approach detailed in [6]. The aforementioned
studies using MRCT have been conducted using explicit time integration exclusively. The current paper focuses on
numerical issues such as the implementation and verification of an implicit formulation of a 3D MRCT element into
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FEAP [7]. We investigate particularly the utilization of the embedded length scale to converge to mesh independent
solution. The aim of our work is to use the MRCT element to simulate necking and fracturing processes where the
implicit method can be a better choice than the explicit MRCT element.

2. Microstructure, material properties and length scale

The response of a material to various load conditions depends on its structure. This structure, being largely hierar-
chical, is primarily dictated by its chemical composition and thermo-mechanical history. In traditional finite element
methods, the description of the deformation and failure of a material is based on the assumption that the material is
homogeneous over the volume represented by an integration point within an element. The size of the element used is
typically much larger when compared to any microstructural component within the material. Therefore, homogenized
constitutive models are calibrated using test specimens with dimensions that far exceed those characteristics of the
scales of the microstructure.

Homogenization theory [8–10] is generally based on the concept of a representative volume element (RVE) of
the underlying microstructure. Homogenization occurs when the mechanical responses resulting from a multifarious
selection of loading conditions applied to the heterogeneous RVE are averaged. The finite element representation of
this RVE consists of stresses, strains, and internal state variables evaluated at a material point. The relations between
these variables depend only on their local values, previous history of deformation and temperature. The traditional
homogenization approach often works well for hardening behavior, however, as damage and subsequent fracture are a
weakest link approach, the details at the scale of the microstructure becomes increasingly important in modeling these
phenomena if sufficient accuracy is to be achieved. Furthermore, softening leads to a localization of the deformation
to the smallest element in the model, thus, the predicted results are highly mesh dependent.

Strain gradient theory was first introduced by the Cosserat brothers [11] and were further developed, e.g. [12–15],
in order to remove the notorious mesh dependency for localization problems. Theories established in this category
inherently include size effects in the constitutive equations. The multiresolution continuum theory (MRCT) developed
in [1], based on [11,13] is a higher order continuum theory in which the expression for the principle of virtual internal
power is extended. It is a general approach that includes many other formulations as subcases and can have multiple
subscales.

MRCT provides a mathematical link between the materials macroscopic property and its microstructures across
several distinct length scales. The evolution of the materials’ microstructure can be evaluated at hierarchal subscales
and coupled with the macroscopic deformation to predict the material behaviors and\or structural performances. It is
then assumed that the inhomogeneous deformations occur at distinct subscales are directly included in the material
constitutive equations of each subscale. This in turn also solves the notorious mesh dependent problem. The theory
addresses the multi-scale nature of the material/structural responses required to predict the material behaviors [16].

3. Multiresolution continuum theory

The basic idea of a higher order continuum theory is that a point in the continuum is considered to be a deformable
particle and a continuum is a collection of such deformable point particles. These point particles are infinitesimal in
size but are assumed to have an inner structure which can be modeled as a sequence of nested microdomains for the
material point x. The formulation for MRCT is developed in terms of the virtual power in such a continuum during
the deformation [17]

The linear approximation of the variation of the velocity field around a material point x in each microdomain shown
in Fig. 1 is written as the first-order Taylor’s series expansion about the center x of the microdomain to give

m li (x + y) = li (x) + gi (x) × yi (1)

where m li denotes the local velocity gradient in each microdomain i . yi is the local coordinate in the i th microdomain
relative to the domain center. The term li is the volume average of the local velocity gradient and gi is the gradient of
micro-velocity gradient

li (x) =
1

�i


�i

m li d� (2)
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Fig. 1. A material point x with one microdomain �1. �0 is the macroscale.

gi (x) =
1

�i


�i

∂m li

∂x
d� (3)

where �i refers to the average volume at each scale.
The principle of virtual power [18] states that

δpint = δpext (4)

which holds at equilibrium for all admissible virtual velocities. For simplicity, we leave out the external virtual power
as well as inertial effects in the following derivation of the MRCT element.

The deformation at the macroscale is coupled with the deformation at each subscale within the multiresolution
continuum. The virtual internal power is now decomposed into two parts to account for both homogeneous and
inhomogeneous deformations.

δpint = δphom
int +

N
i=1

δpinh
int (5)

where N is the total number of subscales. The first term is the traditional homogenized virtual internal power. The
second term arises from the inhomogeneous deformation in each microdomain and is defined as the difference between
the volume average of local inhomogeneous virtual internal power and the virtual internal power at the macroscale,
thus, we have

δphom
int + δpinh

int = σ 0
:δl0 +

N
i=1

1
�i


�i


mσ i

:δm li − σ 0
:δl0


d� (6)

where l0 is the spatial velocity gradient and σ0 is the Cauchy stress tensor at the macroscale. mσ
i is the local stress in

each microdomain i .
The inhomogeneous virtual internal power δpinh

int is approximated by

δpinh
int =

N
i=1

1
�i


�i


mσ i

:δm li − σ 0
:δl0


d�

=

N
i=1

1
�i


�i


mβ i

:


δm li − δl0


d�. (7)

The introduced local microstress mβ i in the i th domain is the power conjugate to the local inhomogeneous velocity
gradient


m li − l0


. The relative virtual internal power mσ i

: δm li − σ 0
: δl0 is studied in detail in the DNS region.

The local stress mσ i and local velocity gradient m li are calculated in each of the microdomains. The clear relationship
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between the quantity
mσ i

: δm li − σ 0
: δl0

 and
m li − l0

 has been shown and this motivates the introduction of
the microstress mβ i . For detailed description please refer to [17].

The velocity gradient m li in Eq. (1) in the microdomain is assumed to vary linearly with yi . Therefore Eq. (7) can
be written as

δpinh
int =

N
i=1

1
�i


�i


mβ i

:


δm li − δl0


d�

=

N
i=1

1
�i


�i


mβ i

:


δli + δgi

· yi
− δl0


d�

=

N
i=1

1
�i


�i


mβ i

:


δli − δl0


d� +

1
�i


�i


mβ i

⊗ yi
 ...δgi


d�

=

N
i=1

β i
:


δli − δl0


+ mi ...δgi . (8)

Two new terms have been introduced above: (1) the microstress β i and (2) the microstress couple mi . These mi-
crostress quantities are related to the local microstress mβ i by

β i
=

1
�i


�i

mβ i d�

mi
=

1
�i


�i

mβ i
⊗ yd�.

(9)

Now, the total virtual internal power integrated over the entire body is written as:

δpint = δphom
int + δpinh

int =


�


σ 0

:δl0 +

N
i=1


β i

:δ


li − l0


+mi ...δgi


d�. (10)

The virtual velocity gradient can be split into a symmetric part d and a skew symmetric part w. d is the rate of de-
formation tensor and w is the spin tensor. During the deformation the rotation of the microdomain with respect to the
macroscopic domain is ignored [16]. Then the expression for the virtual power becomes

δpint = δphom
int + δpinh

int =


�


σ 0

:δd0
+

N
i=1


β i

:δ


di
− d0


+ mi ...δgi

d


d� (11)

where δgi
d represents the symmetric part of gi . As the product of the symmetric stress tensor σ0 and skew symmetric

spin tensor w is zero. Inserting Eq. (11) into Eq. (4) and using integration by parts and Gauss’s theorem leads to

δpint = −


�


∇


σ 0

−

N
i=1

β i


· δv0

+

N
i=1


∇mi

− β i

:δdi


d�

+


S


σ 0

−

N
i=1

β i


· n · δv0d S +


S

N
i=1


mi

· n

:δdi d S = 0. (12)

δv0 is the macroscale virtual velocity, which arises from integrating by parts the power conjugate pairs at each scale.
n and S arise from the application of Gauss’s theorem, S is the surface enclosing the volume and n is the outward
pointing unit normal. Eq. (12) should be valid for all admissible velocity fields. Thus, we obtain

∇ ·


σ 0

−

N
i=1

β i


= 0

∇ · mi
− β i

= 0,

(13)
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with boundary conditions:
σ 0

−

N
i=1

β i


· n = 0

mi
· n = 0.

(14)

MRCT is a general framework that can degenerate into many other deformation theories in certain circumstances.
The above relations, after including possible external loadings, are a generalization of the classical continuum
mechanics theory. The conventional continuum theory is recovered upon setting N = 0. Furthermore, a micromorphic
model [13] can be retrieved when the material in question only possesses two length scales. If the anti-symmetric part
of the local inhomogeneous velocity gradient


li − l0


and the gradient of micro-velocity gradient gi is taken as the

power conjugate of microstress β i and microstress couple mi , respectively, then the Cosserat theory [11] is retrieved.
The general equilibrium relations above are complemented by the constitutive relations described next.

4. Constitutive models

The material in the current paper is assumed to have two scales, one macroscopic scale and one subscale. A
hypoelastic–plastic approach is used in the stress update algorithm and the formulation accommodates large strains.
The macroscopic properties are described either by an elastic–plastic hardening law or a linear strain softening law.
The subscale can accommodate hardening and this makes it also possible to obtain the convergent solutions for
localization problems, which is demonstrated below. A very simple elastic-damage model is used in the microdomain
but it can easily be replaced by more appropriate models for simulating real cases. We focus on the numerical aspects
in the current paper. Therefore, we do not discuss the actual models and values used in depth in this paper.

4.1. Multiresolution constitutive relations

All stress and strain measures in multiresolution continuum are included in the generalized multiresolution stress
vector

Σ T
=


σ 0 β i mi


(15)

and a generalized multiresolution strain vector

∆T
=


d0 di

− d0 gi
d


. (16)

The multiresolution continuum elastic matrix C relates the objective rates of the generalized stress vector and the
elastic part of the generalized strain vector

Σ∇
= C · ∆e. (17)

C is written as

C =


Cσ 0 0

0 Ci
β 0

0 0 Ci
m

 . (18)

Cσ is the conventional elasticity tensor (Hooke’s law), Ci
β and Ci

m are the elastic moduli in each microdomain given
by

Ci
β =

1
�i


�i

mCad� = Ca

Ci
m =

1
�i


�i

mCa
⊗ y ⊗ yd� = Ca

⊗
l i2

12
I.

(19)
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I is the identity matrix, Ca is the volume average of local elasticity tensor in the microdomain. Choosing the elastic
properties is still somewhat of an ad-hoc procedure [2] and in current paper Ca

=
1
10 Cσ is employed. One of the

key features of the MRCT is that the length scale parameter l i for each microdomain, which is the length of one side
of the averaging volume �i , has been directly incorporated into the multiresolution continuum constitutive relations
Eq. (19) which is absent in conventional continuum mechanics method.

4.2. Macroscopic plastic behavior

There are different ways of treating MRCT plastic behaviors. One way is to use a single plastic potential, which is
a function of the generalized stress vector and the generalized internal state variables vector [19,20]. Another way is
to use a multiple plastic potentials method in which the plastic potential at each scale is treated separately [1,20]. In
our current implementation, we use the multiple plastic potentials method.

A classical finite deformation J2 flow theory with a general saturation isotropic hardening law is used to model the
flow stress at the macroscopic scale in the problem demonstrated in Section 6.1.

σy = σ∞ + (σ0 − σ∞) exp

−βε̄ pl


+ Hisoε̄

pl , (20)

where σy is the flow stress, σ0 is the initial uniaxial yield stress, σ∞ is a stress at large values of strain, β is called the
delay constant, Hiso is the linear isotropic hardening modulus and ε̄ pl is the equivalent plastic strain.

The plastic flow rule and evolution equations are given in [21] as

ḋp
= λ̇r

r =
3

2σ̄
σdev

λ̇ = ˙̄ε
pl

,

(21)

where ḋp is the plastic part of macroscopic rate of deformation, the plastic parameter λ̇ is equal to the rate of effective
plastic strain, r is the flow direction, σdev is the deviatoric stress and σ̄ is the von Mises effective stress. The radial
return method is used to update the stresses and internal state variables. In order to obtain the quadratic convergence
rate when using Newton–Raphson iterations for solving the global equilibrium equations, the algorithmic modulus is
needed. It is calculated as

Cal
σ =


∂σ

∂ε


n+1

. (22)

4.3. Elastic-damage in the microdomain

The microdomain is assumed to be either elastic with damage in the problem demonstrated in Section 6.1 or pure
elastic in the problem in Section 6.4. Fig. 2 is a two dimensional view of damage in the microdomain. The parameter
yd

i is the distance from the origin to the location at which the damage has extended to within the microdomain. For
simplicity, yd

i is assumed to be symmetric. Thus yd
i = y−

i = y+

i .
The damaged region is assumed to have completely lost its load carrying capacity and consequently the homoge-

nized elastic matrices with damage for the microdomain are rewritten as

C1
β = Ca

3
i=1

(1 − ωi ) = Ca Z1 Z2 Z3

C1
m = Ca

⊗


l1
2

12
D,

(23)

where

Zi =
2yi

l1 = 1 − ωi (24)
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Fig. 2. Two-dimensional view of damage volumes (gray) that are growing into the microdomain.

and

D =

(Z1)
3 Z2 Z3 0 0
0 Z1 (Z2)

3 Z3 0
0 0 Z1 Z2 (Z3)

3

 , (25)

where ωi is the fraction of the length that is damaged. The equivalent plastic strain at the macroscale is assumed to
govern the damage in the subscale.

ω = ω1 = ω2 = ω3 =


ε̄ pl

− εini t

ε f racture − εini t


. (26)

Thus, we assume that the damage grows equally in all 3 directions. The symbol ⟨⟩ denotes that the expression is zero
for negative arguments. εini t and ε f racture are the effective damage initiation strain and the fracture strain, respec-
tively. More advanced damage models which may include stress or strain components such that damage can vary in
different directions within the microdomain can be used.

5. The implicit MRCT 3D element with one subscale

5.1. Finite element formulation

The nodal velocities give the macroscopic strain rate d0 in Eq. (16). Spin is ignored in the microdomain as stated
in the previous section so only the symmetric part of microscopic velocity gradient is used.

There are 9 degrees of freedom per node for the 3D MRCT element, 3 macroscopic velocities v0 and 6 velocity
gradients d1

i at the subscale. The element interpolation of the nodal values is

ve =

nnode
i=1


N0 0
0 N1


i


v0

d1


i

= Nv. (27)

N0 and N1 indicate that we may use different functions to interpolate the nodal velocities than the microscopic quan-
tities. Likewise, we may use a different number of integration points during numerical integration. The current im-
plementation is based on N1

= N0. The necessary rates of the macroscopic velocity gradient, microscopic velocity
gradient and the gradient of the microscopic velocity gradient can be written as:

d0 (x) = B0v0

d1 (x) = N1d1

g1
d (x) = G1d1.

(28)

Thus the gradient of the micro-velocity gradient tensor g1
d is not an independent variable but is calculated as the gra-

dient of d1 (x) within the element. B0 and G1 are the macroscopic and microscopic spatial derivatives of the mapping
functions.
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The generalized strain rate vector is written as

∆ =


d0

d1
− d0

g1

 =


B0 0

−B0 N1

0 G1




v0

d1


= Qv. (29)

The continuum internal forces are calculated as:

fint =


�

QT Σd� =


�




B0
T 

σ 0
− β1




N1
T

β1
+


G1
T

m1

 d�. (30)

The material tangent stiffness matrix for MRCT element is written as:

Kmat =


�

QT CalQd�

=


�




B0
T

−


B0
T

0

0


N1
T 

G1
T




Cal
σ 0 0

0 Cal1
β 0

0 0 Cal1
m


 B0 0

−B0 N1

0 G1

 d�

=


�




B0
T

Cal
σ B0

+


B0
T

Cal1
β B0

−


B0
T

Cal1
β N1

−


N1
T

Cal1
β B0


N1
T

Cal1
β N1

+


G1
T

Cal1
m G1

 d�, (31)

where Cal
σ , Cal1

β and Cal1
m are algorithmic moduli for the macroscopic and microscopic scales and are calculated

separately at each scale.
The geometric part of the consistent tangent has only been added to the macroscopic part of the element. This may

improve convergence in presence of large rotation of a stressed body. The MRCT tangent stiffness matrix becomes
then

K =


�

K0
+


B0
T

Cal1
β B0

−


B0
T

Cal1
β N1

−


N1
T

Cal1
β B0


N1
T

Cal1
β N1

+


G1
T

Cal1
m G1

 d�, (32)

where

K0
= B0T (Cal

σ − σ̃ )B0
+ G0T σ̂G0. (33)

The detailed expressions of σ̃ , σ̂ and G0 are listed in [22].

5.2. Implementation in FEAP

The above theory for a MRCT element has been implemented in the general purpose finite element analysis
program FEAP [7]. We use the hypoelastic–plastic approach for stress updating as described above. The stress
updating routine for the macroscopic scale and the subscale are put into two separate user-defined material subroutines,
umatl3.f and umatl4.f, driven by the MRCT element subroutine defined as the user element elmt42.f in FEAP. The
flow chart for the relevant user subroutines implemented in FEAP is given in the Appendix.

6. Demonstration of MRCT element

The following example, often used in the literature, is used to verify the coding of the implicit MRCT element. A
3-D bar is subjected to a tensile load by prescribing the displacement of its ends. Due to symmetry, only one eighth of
the geometry is modeled and the mesh is shown in Fig. 3.
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Fig. 3. Mesh of a 3D bar under tension.

The geometry and the material properties of the bar are consistent with that used in Simo [23]. The total length
of the bar is L = 53.334 mm and the radius of the bar is R = 6.413 mm. The radius of the cross-section in the
middle of the bar is reduced by a factor of f = 0.982 to trigger the localization. The Young’s modulus is taken as
E = 206.9 GPa and the Poisson’s ratio is ν = 0.29. The material constants in Eq. (20) are taken as follows:

σ0 = 0.45 GPa σ∞ = 0.715 GPa β = 16.93 Hiso = 0.12924 GPa.

The final axial elongation in the pulling direction (direction 3 in Fig. 3) is 6 mm except for the case when comparing
to the explicit MRCT element where it is 5.4 mm. The higher order boundary conditions are set to zero, which are
unconstrained degrees of freedom. Physically this means the inhomogeneous deformation disappears on the boundary.

6.1. Tensile test result

Fig. 4 shows the variation in tensile stress with different length scales along the center axis of the bar. feap20
denotes the solution obtained when using the large deformation subroutine which is automatically provided by FEAP.
ubar20 denotes the result obtained by using our implementation of the hypoelastic–plastic subroutine with only the
macroscopic part of the MRCT element. These results are given to verify the coding of the macroscopic part of the
MRCT element subroutine. m20L2, m20L4 and m20L6 represent the results obtained using MRCT elements with the
length scale in Eq. (19) set to 2, 4 and 6, respectively. m20 simply indicates that the bar is discretized into 20 layers
in the pulling direction which is a description of how well the mesh is refined, see Fig. 3. The length scales used
(2, 4 and 6) are all larger than the smallest element size. As we can see in the figure, smaller length scales yield
smaller values of damage and thus have less of an effect on the stress distribution. This also means that when a real
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Fig. 4. Tensile stress at different length scales along the center axis of the bar.

Fig. 5. Damage in the subscale along the center axis of the bar.

case is modeled the damage parameters must be selected based on the given length scale. A change in the length scale
will affect the damage distribution.

Damage along the center axis of the bar in the material subscale is plotted in Fig. 5. The damage is highest in the
center region and is zero further away from the localization. This causes the macroscopic stresses to be reduced in this
region compared to the feap20 and ubar20 in Fig. 4. Without damage, the subscale is elastic, which explains why the
macroscopic stress furthest away from the center region becomes higher than that at positions just less than the end of
the bar (e.g., compare positions 21 mm and 25 mm from the center of the bar).

6.2. Convergence rate of MRCT element

The use of the multiresolution consistent tangent in Eq. (32) should ensure 2nd order convergence in the global
equilibrium iterations when using a full Newton–Raphson solver. The force displacement plot for the MRCT element
used for the problem described in the beginning of chapter 6 with 240 elements and a length scale of 2 is shown in
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Table 1
Convergence rate of the MRCT element.

Step Number of iterations Residual norm

11 1 3.4352689E−02
11 2 8.0821923E−02
11 3 2.0131921E−03
11 4 5.9713758E−05
11 5 8.3360297E−08
11 6 1.4531915E−10

576 1 4.4649145E−02
576 2 9.7728188E−06
576 3 2.5410848E−08
576 4 2.4476000E−10

1000 1 4.8782310E−02
1000 2 5.8001274E−02
1000 3 1.4411513E−03
1000 4 8.8169940E−04
1000 5 4.8016347E−04
1000 6 2.1728367E−04
1000 7 8.6925456E−05
1000 8 2.4316621E−05
1000 9 3.4661472E−06
1000 10 8.5144380E−09

Fig. 6. Force displacement plot of MRCT element with a length scale of 2.

Fig. 6. The convergence rate in Table 1 is given for the three time instances marked in this figure. It can be shown via
Table 1 that the convergence rate is in fact 2nd order until the end of the analysis.

6.3. Comparison with the explicit version of MRCT element

The above implicit implementation of the MRCT element is compared with the explicit version of the code in
order to validate the microdomain implementation. This also serves as a comparison between the explicit and implicit
formulations of for quasistatic cases. In this case, the bar is pulled to 5.4 mm instead of 6 mm due to the excessive
dynamic responses of the explicit code. The macroscopic stresses, denoted expmul and impmul, are plotted in Fig. 7.
They are obtained from the MRCT explicit and implicit codes, respectively, using the same length scale. The results



H. Qin et al. / Comput. Methods Appl. Mech. Engrg. 293 (2015) 114–130 125

Fig. 7. Comparison of the macroscopic stress given by the explicit and implicit MRCT element.

Fig. 8. Comparison of the subscale damage given by the explicit and implicit MRCT element.

bear some resemblance. However, there are some dynamic influences on the results for the explicit code. The subscale
damage of the two codes is plotted in Fig. 8. The damage predicted by the two elements is also observed to be similar.

6.4. Mesh independent solutions and length scale

The problem described in beginning of chapter 6 is modified in order to introduce a stronger softening behavior.
The problem is used to demonstrate the mesh independent results that can be obtained due to the length-scale in the
MRCT element. Linear strain softening in the macroscopic constitutive behavior of the material is introduced. The
example can be found in [5]. The subscale is purely elastic without damage. The macroscopic Young’s modulus is
E = 80 GPa, Poisson’s ratio is ν = 0.29, initial yield stress is σ0 = 0.160 GPa and the linear softening modulus is
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Fig. 9. Refined mesh with more elements.

−0.150 GPa [5]. The boundary conditions used here are the same as the previous problem except that the final axial
elongation in the pulling direction is 1 mm.

The mesh is refined such that there are more elements to use in checking the length scale effect on the mesh
sensitivity of the MRCT element. The refined meshes are shown in Fig. 9. The number following the letter m refers
to the division of the mesh in z direction. The number after letter r refers to the division of the mesh in the radius of
the bar. Length scale parameter is taken as L = 10, so that it is fully resolved in the each of the mesh discretizations.

The effective plastic strain along the center axis of the bar for different mesh discretizations is plotted in Fig. 10.
m20r4, m30r6, m40r8, m50r10, m60r12 represent the results predicted by conventional continuum method, while
m20r4L10, m30r6L10, m40r8L10, m50r10L10 and m60r12L10 are predicted by the MRCT element with length scale
10. It shows clearly that the results predicted by the conventional continuum methods are dependent upon the mesh
as opposed the results predicted by the MRCT element, which gives the mesh independent solution. We have in the
current case used a rather large length scale in the MRCT element as it is necessary to resolve this length scale in
order to obtain a mesh independent solution.

Fig. 11 shows how changing the length scale affects the deformation. m40 represents the result predicted by the
conventional finite element, the rest of the curves are the results predicted by the MRCT element with different length
scales for the same mesh. L001, Lele, L1, L3 and L10 here simply mean the length scale parameter is taken as 0.01,
element size, 1, 3 and 10 respectively. The length scale parameter determines the localization behavior.

The results in terms of force–displacement are shown in Fig. 12. Mesh sensitivity is expected for curves m20r4,
m30r6, m40r8, m50r10 and m60r12, which are predicted by conventional continuum method. The more the mesh is
refined the steeper the slope of the curve is. The curves predicted by MRCT element remain close and have the same
slope. Fig. 13 is the magnified force displacement plot of Fig. 12. We can see that the slopes are the same for MRCT
elements as opposed to the results predicted by conventional continuum method. The MRCT results are converging.

7. Conclusions and discussion

• The implementation of an implicit MRCT element into FEAP has been verified. It is a general formulation for
higher order continuum theory and can accommodate several other types of formulations. It can accommodate
multiple scales, as shown in the works by Liu and coworkers.

• The merit of the implicit MRCT element compared to the explicit version is that no dynamic vibrations show up
when modeling quasistatic problems.

• The element shows second order convergence in the equilibrium iterations verifying the formulation of the element
tangent matrix.
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Fig. 10. Equivalent plastic strain along the center axis of the bar with length scale of 10 for different mesh discretizations.

Fig. 11. Results predicted by different length scale parameter for the same mesh.

• The element can be used to obtain mesh independent results in the case of deformation localization when choosing
an appropriate length scale associated with the microdomain. The mesh needs to be refined to fully resolve the
length scale.

• The length scale of the microdomain should be related to the physics of the problem at hand. However, it can also
be used as a numerical regularization parameter to obtain mesh independent results.

It is not obvious how to calibrate the constitutive behavior of the microdomain. One can note from the evaluations
above that the used properties must be related to the chosen length scale. In future work, the implicit MRCT element
will be applied to the problem of fracturing of high strength steels where the constitutive behavior need to be addressed
more in detail.
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Fig. 12. Force displacement plot.

Fig. 13. Magnified force displacement plot.
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Appendix

The main steps of the implementation of the multiresolution element into FEAP are listed in Tables A.1 and A.2,
respectively.
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Table A.1
Main steps in MRCT user element subroutine elmt42.f.

Subroutine elmt42
Call 3D Gauss quadrature routine to retrieve element quadrature point information
Enter loop covering all integration points in the element

Call shape function routine to calculate the shape functions Ni , the Cartesian shape function derivatives and the determinant of the Jacobian
matrix

Call strain matrix routine to calculate mid-point strain increment at the macroscopic scale and at the subscale. Calculate the macroscopic spin
increment

Call umatl3.f to update macroscopic stresses and calculate the macroscopic algorithmic modulus. Stress rotation is calculated according to
local rotated representation [24] to ensure incremental objectivity

Call umatl4.f to update microscopic stresses and damage in the subscale. Incrementally objective microstresses are ensured with local rotated
representation as well

Call a routine to evaluate the internal forces based on Eq. (30)
Call a routine to assemble the multiresolution tangent stiffness matrix based on Eq. (32)

End integration loop
End subroutine elmt42

Table A.2
Main steps of macroscopic stress updating subroutine umatl3.f.

Subroutine umatl3
Set the material parameters
Retrieve the history data from previous time step n.
Call a stress rotation routine to rotate σn and the macroscopic strain increment d0 based on [24].
Compute the deviatoric trial stress.
Check for yielding.
If yielding, then apply the radial return method to update the stresses to get σn+1. Algorithmic modulus Cal

σ is evaluated here.
If not yielding, elastic step.
End subroutine umatl3
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