منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله رفع تاری تصویر و حذف نویز توسط مدل پیشرفته متغیر

عنوان فارسی
رفع تاری تصویر و حذف نویز توسط مدل پیشرفته متغیر
عنوان انگلیسی
Image deblurring and denoising by an improved variational model
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
6
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E2064
رشته های مرتبط با این مقاله
مهندسی برق، مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
مهندسی نرم افزار
مجله
مجله بین المللی الکترونیک و ارتباطات (AEU)
دانشگاه
دانشکده ریاضی و آمار، دانشگاه علم و صنعت هنان، چین
کلمات کلیدی
تنوع کل، حذف نویز تصویر، اثر راه پله
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Total variation method has been widely used in image processing. However, it produces undesirable staircase effect. To alleviate the staircase effect, some fourth order variational models were studied, which lead to the restored images smoothing and some details lost. In this paper, a low-order variational model for image deblurring and denoising is proposed, which is based on the splitting technique for the regularizer. Different from the general split technique, the improved variational model adopts the L1 norm. To compute the new model effectively, we employ an alternating iterative method for recovering images from the blurry and noisy observations. The iterative algorithm is based on decoupling of deblurring and denoising steps in the restoration process. In the deblurring step, an efficient fast transforms can be employed. In the denoising step, the primal–dual method can be adopted. The numerical experiments show that the new model can obtain better results than those by some recent methods.

نتیجه گیری

4. Conclusions


A novel variational model for image deblurring and denoising is proposed, which is based on the splitting technique for the regularization term. Different from the general splitting technique, the improved variational model adopts the L1 norm. In addition, we employ an alternating iterative method based on decoupling of deblurring and denoising steps in the restoration process. In the deblurring step, Fast Fourier Transform (FFT) is employed. In the denoising step, we use the primal–dual method. The numerical experiments show that the new model can obtain better results than those restored by some existing restoration methods.


بدون دیدگاه