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Total variation method has been widely used in image processing. However, it produces undesirable
staircase effect. To alleviate the staircase effect, some fourth order variational models were studied,
which lead to the restored images smoothing and some details lost. In this paper, a low-order variational
model for image deblurring and denoising is proposed, which is based on the splitting technique for the
regularizer. Different from the general split technique, the improved variational model adopts the L1
norm. To compute the new model effectively, we employ an alternating iterative method for recovering
images from the blurry and noisy observations. The iterative algorithm is based on decoupling of deblur-
ring and denoising steps in the restoration process. In the deblurring step, an efficient fast transforms can
be employed. In the denoising step, the primal–dual method can be adopted. The numerical experiments
show that the new model can obtain better results than those by some recent methods.

� 2016 Elsevier GmbH. All rights reserved.
1. Introduction

The problem of image restoration has been widely studied in
the last several years. The goal of image restoration is to recover
the true image f from the observed noisy image

u0 ¼ Hf þ g; ð1Þ

where u0 is the observed noisy image, H is a bounded linear opera-
tor representing the convolution, and g denotes the additive Gaus-
sian white noise.

Recovering f from u0 is a typical example of an inverse problem.
Since inverse problems are typically ill posed, a classical way to
overcome ill-posed minimization problems is to add some regular-
ization terms to the energy. This idea was firstly introduced by
Tikhonov and Arsenin [1] as follows:

min
f

Z
X
jHf � u0j2dxþ k

2

Z
X
jrf j2dx; ð2Þ

where k > 0 is a regularization parameter which balances the first
and second terms. However, this model has very strong isotropic
smoothing properties and tends to make images overly smooth, it
often fails to adequately preserve important image attributes such
as sharp edges. In order to overcome these drawbacks, the authors
in [2] used the Total Variation (TV) of f instead of the L2 norm of the
gradient of f and proposed the following model

min
f

Z
X
jHf � u0j2dxþ k

Z
X
jrf jdx: ð3Þ

Although the TV regularizer has the ability of preserving the edges,
it also gives rise to some undesired effects and transforms smooth
signal into piecewise constant, the so-called staircase effects. In
order to reduce the staircase effect, some high-order variational
models were introduced [3–8], which contain the second order TV
regularization terms. However, those high-order variational models
need more complex boundary conditions.

Due to the nondifferentiability and nonlinearity of the TV func-
tion, Eq. (3) is more difficult to solve, some fast algorithms sprang
up in recent years [9–13]. The authors in [9] used the variable-
splitting and penalty techniques to solve the model. Ref. [10] and
Ref. [11] put to use majorization–minimization method and alter-
nating direction method for the TV image deblurring problems. In
addition, the authors in [12,13] further studied the total bounded
variational models for image deblurring and denoising problems.
Nikolova et al. [14] studied nonconvex nonsmooth minimization
methods for image restoration. There are also other methods for
image deblurring, such as kernel regression [15], soft-
thresholding method [16,17], nonlocal method [18], and wavelet
method [19], etc.

Recently, to overcome the nondifferentiability and nonlinearity
of the TV function of f in Eq. (3), Huang, Ng and Wen [20] intro-
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duced a new auxiliary variable u and proposed a fast TV minimiza-
tion method as follows:

min
f ;u

1
2
kHf � u0k22 þ

k
2
kf � uk22 þ a

Z
X
jrujdx; ð4Þ

where k; a are positive regularization parameters. With this new
auxiliary variable u, Eq. (4) can be solved effectively by decoupling
of deblurring and denoising steps in the restoration process. In the
deblurring step, fast transforms can be employed. In the denoising
step, the TV model is solved by dual algorithm. Because the TV reg-
ularization term in Eq. (4) produces the staircase effect, in order to
reduce it, the authors in [4] used the second order TV of u instead of
the first order TV of u in Eq. (4) to design the following model

min
f ;u

1
2
kHf � u0k22 þ

k
2
kf � uk22 þ a

Z
X
jr2ujdx: ð5Þ

With the above model (5), the authors provided better results.
However, the high-order TV regularizer causes some edges and
details smoothed out, which are the very important characteristics
in the restored images.

Inspired by the splitting idea [20], we introduce an auxiliary
variable in the regularization term of Eq. (5) and divide the second
order derivative term into two low order terms. The aim is that it
not only can lower the order of image, but can alleviate the stair-
case effect. To solve the proposed model effectively, we also design
an alternating iterative algorithm. From the experimental results,
we see that the new model obtains better results than some cur-
rent state-of-the-art methods. In addition, the new model’s order
is lower than the fourth order, so it does not need the more com-
plex boundary condition than the fourth order diffusion equations.

In the rest of this paper, we will give the newmodel in Section 2.
In Section 3, we do some numerical experiments to test our algo-
rithm. Finally, Section 4 concludes this paper.

2. The proposed model and algorithm

2.1. The proposed model

From Eq. (4), we can see that it in fact splits the regularization
term f of Eq. (3) into two terms by introducing an auxiliary variable
u. When k goes to infinity, the solution of Eq. (4) converges to that
of Eq. (3). By the variable splitting, the operator of gradient and the
operator of convolution can be computed respectively, and Eq. (4)
can be solved by some fast algorithms effectively. Inspired by this
idea, we introduce a new auxiliary variable v and propose the fol-
lowing model

min
u;v;f

b
2

Z
X
ðHf � u0Þ2dx

þ k
2
kf � uk22 þ a1

Z
X
jru� vjdxþ a2

Z
X
jrvjdx; ð6Þ

where b; k; a1; a2 are the regularization parameters.
The proposed model has the following advantages: firstly, when

a1 ! 1, then v ¼ ru, and Eq. (6) turns into Eq. (5), that is, it con-
tains the second order TV, so it can reduce the staircase effect.
When a2 ! 1, then rv ! 0, the regularizer in Eq. (6) turns into
the first order TV which is similar to Eq. (4), and it has the ability
of preserving edges. All in all, Eq. (6) can automatically balance
the first and second order terms by the parameters a1;a2, and it
has the abilities of preserving the edges and reducing the staircase
effect, which has been proved in [21,22].

Secondly, our variable splitting is different from Eq. (4) and [9].
We adopt the L1 norm between vector v and the gradient of u not
the L2 norm. The advantage of this norm is that it can overcome the
shortcoming of overly smooth, because the Euler–Lagrange of the
Please cite this article in press as: Xu J et al. Image deblurring and denoising by a
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L2 norm produces the Laplace operator, which can smooth edges
and details of the restored images.

From the above explanation, we can conclude that the proposed
model provides a way of balancing between the first and second
order of the objective function, so it can reduce the staircase effect
while denoising. Meanwhile, it has the properties of edge preserva-
tion which is very important in image deblurring.

2.2. The proposed algorithm

To solve the proposed model (6), we use the following alternat-
ing direction method. The iterative algorithm is based on decou-
pling of denoising and deblurring steps in the image restoration
process. It can be written into the following two minimization
subproblems:

(1) Denoising step. For f fixed, find the solutions of u;v
n impr
ðukþ1;vkþ1Þ ¼ argmin
u;v

a1

Z
X
jru� v jdxþ a2

Z
X
jrv jdx

þ k
2
kf k � uk22: ð7Þ

Deblurring step. For u fixed, find the solution of f
(2)
f kþ1 ¼ argmin
f

b
2
kHf � u0k22 þ

k
2
kf � ukþ1k22: ð8Þ
We now give the corresponding algorithms for Eq. (7) and Eq.
(8) respectively. First, for Eq. (7), by applying the Legendre–Fenchel
transform, we obtain

argmin
u;v

a1

Z
X
jru� v jdxþ a2

Z
X
jrvjdxþ k

2
kf k � uk22

¼ argmin
u;v

max
p2P;q2Q

hru� v ; pi þ hrv ; qi þ k
2
kf k � uk22;

ð9Þ

where P¼ fp¼ ðp1;p2ÞT jpj6 a1j g; Q ¼ q¼ q11; q12
q21; q22

� �
jqj6 a2j

� �
,

p; q are the dual variables.
Applying the primal–dual method in [21,23] to Eq. (9), we can

get the iterative schemes as follows:

pkþ1 ¼ projPðpk þ dðr�uk � �vkÞÞ
qkþ1 ¼ projQ ðqk þ dðr�vkÞÞ
ukþ1 ¼ ukþskf kþsdivpkþ1

1þsk

vkþ1 ¼ vk þ sðpk þ div�hqkþ1Þ
�ukþ1 ¼ 2ukþ1 � uk

�vkþ1 ¼ 2vkþ1 � vk

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

where projPð~pÞ ¼ ~p
maxð1;j~pj=a1Þ ; projQ ð~qÞ ¼ ~q

maxð1;j~qj=a2Þ for any ~p; ~q; d; s
are positive parameters.

Second, for Eq. (8), its corresponding Euler–Lagrange equation is

bHTðHf kþ1 � u0Þ þ kðf kþ1 � ukþ1Þ ¼ 0; ð11Þ
so we have

ðkI þ bHTHÞf kþ1 ¼ ðbHTu0 þ kukþ1Þ: ð12Þ
Because of the regularized term kI, the coefficient matrix

ðkI þ bHTHÞ is always invertible. We can obtain a closed solution
for Eq. (12) as follows.

f kþ1 ¼ ðkþ bHTHÞ�1ðbHTu0 þ kukþ1Þ: ð13Þ
We note that when some boundary conditions, such as periodic
boundary conditions, zero boundary conditions, et al., are applied
oved variational model. Int J Electron Commun (AEÜ) (2016), http://
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Table 1
The experimental results of four methods for different noise levels.

Image Noise [4] [9] [14] Our

SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM

Barbara 0.01 10.540 0.0123 0.7414 10.454 0.0126 0.7434 10.586 0.0122 0.7354 10.713 0.0118 0.7401
0.05 9.8034 0.0146 0.6586 9.5283 0.0155 0.6562 9.5496 0.0155 0.6376 9.7715 0.0147 0.6525
0.1 9.2233 0.0167 0.6040 9.0077 0.0175 0.6063 8.9351 0.0178 0.5768 9.2168 0.0167 0.5996
0.2 8.4084 0.0201 0.5489 8.2485 0.0209 0.5450 8.2165 0.0210 0.5274 8.4572 0.0199 0.5430

Boat 0.01 14.600 0.0040 0.9511 14.881 0.0037 0.9488 14.851 0.0038 0.9521 15.018 0.0036 0.9540
0.05 12.350 0.0067 0.8659 12.471 0.0065 0.8717 12.198 0.0069 0.8705 12.471 0.0065 0.8665
0.1 10.927 0.0093 0.7813 10.901 0.0093 0.8004 10.791 0.0096 0.7983 11.067 0.0090 0.7981
0.2 9.0717 0.0142 0.6596 9.4727 0.0129 0.7078 9.2925 0.0135 0.7078 9.4950 0.0129 0.7049

Cameraman 0.01 13.650 0.0093 0.8323 14.224 0.0082 0.8260 14.492 0.0077 0.8371 14.499 0.0077 0.8417
0.05 12.132 0.0132 0.7158 12.279 0.0128 0.7585 12.534 0.0121 0.7659 12.584 0.0119 0.7535
0.1 11.027 0.0171 0.6612 11.087 0.0168 0.7223 11.388 0.0157 0.7083 11.560 0.0151 0.7098
0.2 9.5648 0.0239 0.5308 9.9705 0.0218 0.6543 10.087 0.0212 0.6828 10.241 0.0204 0.6434

House 0.01 16.962 0.0020 0.8622 15.563 0.0028 0.8679 17.633 0.0017 0.8665 17.900 0.0016 0.8678
0.05 14.507 0.0035 0.7875 13.754 0.0042 0.8035 14.801 0.0033 0.8168 15.123 0.0031 0.7873
0.1 12.742 0.0053 0.7250 12.369 0.0058 0.7820 12.895 0.0051 0.7831 13.529 0.0044 0.7811
0.2 10.150 0.0097 0.6604 10.522 0.0089 0.7162 11.024 0.0079 0.7405 11.329 0.0074 0.7194

Lady 0.01 21.555 0.0015 0.9235 19.675 0.0023 0.9270 21.738 0.0015 0.9182 22.190 0.0013 0.9213
0.05 18.387 0.0031 0.8439 17.459 0.0039 0.8497 18.051 0.0034 0.8523 18.762 0.0029 0.8435
0.1 16.330 0.0050 0.7664 16.049 0.0054 0.8237 16.071 0.0054 0.8092 16.728 0.0046 0.7842
0.2 14.418 0.0078 0.7351 14.131 0.0084 0.7461 14.353 0.0080 0.7534 14.798 0.0072 0.7509

Lena 0.01 15.088 0.0068 0.8683 14.563 0.0077 0.8572 15.453 0.0062 0.8575 15.707 0.0059 0.8671
0.05 12.839 0.0114 0.7815 12.647 0.0119 0.7893 12.743 0.0117 0.7746 13.261 0.0103 0.7857
0.1 11.478 0.0156 0.7147 11.256 0.0164 0.7404 11.192 0.0167 0.7093 11.823 0.0144 0.732
0.2 9.8757 0.0226 0.6618 9.7577 0.0232 0.6689 9.8212 0.0228 0.6624 10.197 0.021 0.668

Pepper 0.01 14.009 0.0062 0.894 11.957 0.01 0.8993 12.824 0.0082 0.8796 14.352 0.0058 0.8905
0.05 11.851 0.0103 0.816 10.90 0.0128 0.8254 10.968 0.0126 0.8114 11.539 0.011 0.8231
0.1 10.654 0.0135 0.7515 9.9661 0.0158 0.7868 9.8392 0.0163 0.7482 10.473 0.0141 0.7632
0.2 9.1952 0.0189 0.6995 8.8349 0.0205 0.7148 8.7466 0.021 0.7076 9.1524 0.0191 0.719

Toys 0.01 17.221 0.0026 0.9287 15.406 0.0039 0.9311 16.887 0.0028 0.9211 17.465 0.0025 0.9273
0.05 13.557 0.006 0.842 12.946 0.007 0.8714 13.456 0.0062 0.8545 13.837 0.0057 0.8459
0.1 11.329 0.0101 0.7717 11.392 0.0099 0.8264 11.543 0.0096 0.8137 12.203 0.0083 0.8251
0.2 9.2102 0.0164 0.7205 9.4366 0.0156 0.7711 9.6466 0.0149 0.7628 9.980 0.0138 0.7645

Table 2
The corresponding average values for four different noises in Table 1.

Noise [4] [9] [14] Our

SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM

0.01 15.453 0.0056 0.8751 14.59 0.0065 0.8751 15.558 0.0056 0.871 15.981 0.0053 0.8763
0.05 13.179 0.0086 0.7891 12.749 0.0095 0.8033 13.038 0.009 0.7981 13.418 0.0084 0.7953
0.1 11.714 0.0116 0.722 11.504 0.0121 0.7609 11.581 0.0121 0.7433 12.062 0.0108 0.7474
0.2 9.987 0.0168 0.6523 10.047 0.0166 0.6905 10.148 0.0164 0.6931 10.457 0.0151 0.6891
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to the image boundary, the matrix H can be diagonalized by the dis-
crete fast transform [19].

From the above discussion, the detail algorithm for the pro-
posed model is as follows:

Algorithm. The iterative algorithm for the proposed model (6).

Initialization: u0; �u0; v0; �v0 ¼ 0; p0;q0 ¼ 0; k ¼ 0
Step 1: Compute ukþ1; vkþ1 by Eq. (10),

Step 2: Compute f kþ1 by Eq. (13),
Until: A stopping criterion is satisfied; otherwise set
k ¼ kþ 1 and return to Step 1.
3. Numerical experiments

To validate the deblurring and denoising performance of the
proposed model, we test several images using our algorithm. All
test images are normalized to be in [0,1] In addition, in order to
measure the quality of the restored image, Signal to Noise Ratio
Please cite this article in press as: Xu J et al. Image deblurring and denoising by a
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(SNR) in decibels (db), the Relative Error (ReErr) and Structural
Similarity (SSIM) [24] are employed, which are defined as follows
respectively:

SNR ¼ 10log10

kf 0 � lf 0k22
kf 0 � u�k22

; ReErr ¼ ku� � f 0k22
kf 0k22

;

SSIMðf 0;u�Þ ¼ 4rf 0u�lu�lf 0

r2
u� þ r2

f 0

� �
l2

u� þ l2
f 0

� � ;

where u� is the restored image, f 0 is the original clean image,

ru� ; rf 0 are the standard deviation of u� and f 0, lu� ; lf 0 are the

mean value of u� and f 0, rf 0u� is the covariance of u� and f 0. SSIM

has been widely used to test the quality of the restored image,
and the value is higher, the structural similarity is better.

In the following experiments, we compare the new model with
the high-order model [4], total variational model [9], and the non-
convex model [14], respectively. The parameters in [9] and [14]
have been recommended, and the parameters of [4] have to be
n improved variational model. Int J Electron Commun (AEÜ) (2016), http://
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Table 3
The experimental results of four methods for different images.

Image Case [4] [9] [14] Our

SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM

Barbara i 15.82 0.004 0.885 15.24 0.004 0.901 16.15 0.003 0.893 16.77 0.003 0.895
ii 9.049 0.017 0.590 8.763 0.019 0.586 8.694 0.019 0.557 9.052 0.017 0.587
iii 8.056 0.022 0.517 7.880 0.023 0.526 7.819 0.023 0.502 8.109 0.022 0.519

Boat i 17.11 0.002 0.973 17.22 0.002 0.977 17.20 0.002 0.977 17.43 0.002 0.977
ii 10.15 0.011 0.764 10.02 0.011 0.760 9.965 0.012 0.767 10.28 0.011 0.757
iii 8.283 0.017 0.611 8.508 0.016 0.638 8.370 0.017 0.652 8.540 0.016 0.640

Cameraman i 16.44 0.005 0.868 17.02 0.004 0.892 17.86 0.004 0.885 17.82 0.004 0.873
ii 10.24 0.020 0.672 10.27 0.020 0.699 10.54 0.019 0.698 10.75 0.018 0.667
iii 8.657 0.029 0.570 9.054 0.027 0.596 9.128 0.026 0.653 9.190 0.026 0.593

House i 19.66 0.001 0.895 16.73 0.002 0.898 19.72 0.001 0.893 20.04 0.001 0.894
ii 12.21 0.006 0.746 11.51 0.007 0.767 11.96 0.006 0.755 12.49 0.006 0.736
iii 9.196 0.012 0.629 9.404 0.012 0.666 9.714 0.011 0.708 9.865 0.01 0.648

Lady i 24.13 0.001 0.943 20.73 0.002 0.944 24.18 0.001 0.940 24.54 0.001 0.943
ii 15.53 0.006 0.795 15.32 0.006 0.813 15.32 0.006 0.774 16.22 0.005 0.791
iii 13.23 0.01 0.704 13.03 0.011 0.692 13.26 0.01 0.721 13.62 0.009 0.698

Lena i 17.57 0.004 0.913 16.37 0.005 0.911 17.79 0.004 0.906 18.09 0.003 0.910
ii 10.73 0.019 0.703 10.45 0.02 0.712 10.43 0.02 0.686 11.13 0.017 0.707
iii 8.743 0.029 0.585 8.810 0.029 0.618 8.747 0.029 0.618 9.159 0.027 0.619

Pepper i 17.64 0.003 0.925 12.58 0.009 0.92 17.01 0.003 0.909 18.44 0.002 0.92
ii 9.858 0.016 0.737 9.344 0.018 0.762 9.220 0.019 0.730 9.901 0.016 0.753
iii 7.953 0.025 0.656 8.018 0.025 0.66 7.918 0.025 0.667 8.272 0.023 0.667

Toys i 19.78 0.001 0.953 16.55 0.003 0.953 19.01 0.002 0.946 19.56 0.002 0.951
ii 11.40 0.01 0.803 10.81 0.011 0.817 10.83 0.011 0.785 11.29 0.01 0.789
iii 8.628 0.019 0.731 8.359 0.02 0.712 8.897 0.018 0.741 8.987 0.017 0.721

Table 4
The corresponding average values for the different cases in Table 3.

Case [4] [9] [14] Our

SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM SNR ReErr SSIM

i 18.519 0.0026 0.9194 18.519 0.0026 0.9194 18.615 0.0025 0.9186 19.086 0.0023 0.9204
ii 11.146 0.0131 0.7262 10.811 0.014 0.7395 10.870 0.014 0.719 11.389 0.0125 0.7234
iii 9.0933 0.0204 0.6254 9.1329 0.0204 0.6385 9.2316 0.0199 0.6578 9.4678 0.0188 0.6381

(a)

(b)

Fig. 1. Four clean and noisy images. (a) shows the clean images, and (b) shows the noisy and blurry images. From left to right, the noise is indicated by 0.01, 0.05, 0.1, 0.2, the
corresponding supports are 5� 5; 7� 7; 9� 9; 11� 11 and r are 1; 1:5; 2; 2:5, respectively.
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(a)

(b)

(c)

(d)

Fig. 2. Restoration results of different methods. From (a) to (d) the results are obtained by the recent model in [4], the model in [9], the model in [14] and the proposed model,
respectively.
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chosen by trial method. Note that the stopping condition in each
algorithm is that it can obtain the best SNR values respectively.

We now give some parameters d; s; a1; a2; b; k to start up our
algorithm. Firstly, parameters d; s are used to control the conver-
gence of algorithm. From [22], we know that the two parameters
should be small as far as possible to guarantee algorithm to con-
verge, however, if they are too small, the algorithm will be very
slow, so in order to balance them, through some trials, we find that
when d 2 ½0:01;1�; s 2 ½0:01;0:2�, the proposed algorithm is very
stable. So in the following experiments, we choose d ¼ 0:5 and
s ¼ 0:1. For the parameters b; k, it is important for us to choose
the optimal values adaptively. Unfortunately, this problem has
not been fully solved, and we have to choose them by the trial
method. We test different values of b; k in order to find out the
restored image with the highest SNR among the tested values
Please cite this article in press as: Xu J et al. Image deblurring and denoising by a
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and find that b; k 2 ½0:1;0:5� are a relative good choice in the fol-
lowing experiments. a1; a2 are equilibrium parameters by manual
adjustment according to different noise level. We observe that for
256� 256 test images, when the noise level is 0.05,
a1; a2 2 ½0:001;0:1�, the proposed algorithm can obtain good
results. If the noise level is higher, take the bigger parameter a1,
we can obtain the better results.

We firstly test the performance of the proposed method under
different levels of noise and the support is equal to 7� 7. The
tested Gaussian noises are with the standard deviation of 0.01,
0.05, 0.10 and 0.20, respectively. The tested blurring functions
are chosen to be truncated two dimensional Gaussian function

hðs; tÞ ¼ exp
�s2 � t2

2r2

� �
; �3 6 s; t 6 3; ð14Þ
n improved variational model. Int J Electron Commun (AEÜ) (2016), http://
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with r ¼ 1:5. The experimental results are listed in Table 1. In order
to evaluate the performances of different algorithms, we compute
the respective average values for four noise levels in Table 2.

Secondly, we also test the following several conditions. (i) r ¼ 1
and the support is equal to 5� 5 for the noise standard deviation
0.01; (ii) r ¼ 2 and the support is equal to 9� 9 for the noise stan-
dard deviation 0.1; (iii) r ¼ 2:5 and the support is equal to 11� 11
for the noise standard deviation 0.2. The corresponding results are
listed in Table 3, and their respective average values in Table 4.

By inspection of Tables 1 and 2, we can observe that for most
denoising results the proposed algorithm achieves better values
of SNR, ReErr (SNR averagely exceed about 0.4db over the recent
model in [4], 0.7 db over the model in [9], and over 0.4 db the
model in [14]). For SSIM values, due to the use of the lower order
TV regularizer, the proposed model averagely obtains higher SSIM
values than the second order TV model in [4], which shows that the
more details and edges are reserved. Even for the unsuccessful
cases, our algorithm yields comparable value comparing with the
best values. Consequently, we believe that the proposed model
can averagely perform better than the other three models. Simi-
larly, we get the similar results in Tables 3 and 4.

To make a visual comparison of the restoration images, we also
give the restored results for four noise levels with four different
images in Fig. 1. From the restored results in Fig. 2, we can see that
the proposed model obtains the better visual resolution than other
three methods.

4. Conclusions

A novel variational model for image deblurring and denoising is
proposed, which is based on the splitting technique for the regular-
ization term. Different from the general splitting technique, the
improved variational model adopts the L1 norm. In addition, we
employ an alternating iterative method based on decoupling of
deblurring and denoising steps in the restoration process. In the
deblurring step, Fast Fourier Transform (FFT) is employed. In the
denoising step, we use the primal–dual method. The numerical
experiments show that the new model can obtain better results
than those restored by some existing restoration methods.
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