دانلود رایگان مقاله انگلیسی الگوریتم کلونی مورچه بر اساس صلاحیت با Q-learning سیستم کوانتومی - اشپرینگر 2018

عنوان فارسی
الگوریتم کلونی مورچه بر اساس صلاحیت با Q-learning سیستم کوانتومی
عنوان انگلیسی
Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
15
سال انتشار
2018
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
کد محصول
E6530
رشته های مرتبط با این مقاله
کامپیوتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
مهندسی الگوریتم و محاسبات، مدیریت سیستم های اطلاعاتی و بهینه سازی
مجله
مجله بین المللی فیزیک نظری - International Journal of Theoretical Physics
دانشگاه
School of Information Science and Engineering - Central South University - China
کلمات کلیدی
پایبندی، الگوریتم کلونی مورچه، یادگیری Q، محاسبات کوانتومی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

نتیجه گیری

6 Conclusion


In this paper, a fidelity-based ACA is presented for the control design of quantum system. To improve the performance of fidelity-based ACA, a fidelity-based ACA with Q-learning is introduced. In this improved algorithm, the fidelity information can be extracted from the system structure or the system behavior. The aim is to design a good exploration strategy for a better tradeoff between exploration and exploitation, and to speed up the convergence as well. Experimental results show that fidelity-based ACA with Q-learning is superior to the fidelity-based ACA. The control problems of a spin-(1/2) system is adopted to demonstrate the performance of the fidelity-based ACA with Q-learning. In the future, our work will focus on improving the fidelity-based ACA by combining with other algorithms.


بدون دیدگاه