منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی الگوریتم خوشه بندی مبتنی بر همبستگی داده های چندمودی در اینترنت اشیا شناختی - IEEE 2017

عنوان فارسی
الگوریتم خوشه بندی مبتنی بر همبستگی داده های چندمودی در اینترنت اشیا شناختی
عنوان انگلیسی
Device Clustering Algorithm Based on Multimodal Data Correlation in Cognitive Internet of Things
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2017
نشریه
آی تریپل ای - IEEE
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
پایگاه
اسکوپوس
کد محصول
E10759
رشته های مرتبط با این مقاله
مهندسی کامپیووتر، فناوری اطلاعات
گرایش های مرتبط با این مقاله
الگوریتم ها و محاسبات، اینترنت و شبکه های گسترده
مجله
مجله IEEE اینترنت اشیا - IEEE Internet of Things Journal
دانشگاه
School of Computer Science and Technology - Dalian University of Technology - China
کلمات کلیدی
چند حالته، همبستگی داده ها، اینترنت اشیا شناختی (CIoT)، خوشه بندی دستگاه
doi یا شناسه دیجیتال
https://doi.org/10.1109/JIOT.2017.2728705
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


With the development of information network, the popularity of Internet of Things (IoT) is an irreversible trend, and the intelligent demands for IoT is becoming more and more urgent. How to improve the cognitive ability of IoT is a new challenge and therefore has given rise to the emergence of Cognitive Internet of Things (CIoT). In this paper, a device level multimodal data correlation mining (DMDC) model is firstly designed based on the CCA to transform the data feature into a subspace and analyze the data correlation. The correlation of the device is obtained based on the comprehensive of data correlation and the location information of the device. Then a heterogeneous clustering model (HDC) is proposed by using the result of the correlation analysis to classify the device. Finally, we propose a device clustering algorithm based on multimodal data correlation (DCMDC) for CIoT, which combines the functions of multimodal data correlation analyze with device clustering. Extensive simulations are carried out and our results show that the proposed algorithm can effectively improve the quality of data transmission and the intelligent service.

نتیجه گیری

CONCLUSION


To increase the data cognitive ability of CIoT, this paper introduces a device clustering algorithm based on multimodal data correlation which including the function of data correlation analyze and device clustering. A device-level multimodal data correlation mining model is firstly proposed based on the CCA algorithm to analyze the multimodal data and device correlation, which is capable of classifying the device according to the data correlation and device distribution. The DCMDC clusters the heterogeneous devices in CIoT according to their correlation by using the result of the data correlation mining model. Extensive simulations are performed to evaluate the proposed algorithm. The results show that the designed algorithm can achieve a satisfying quality of device clustering and has the potential to transform into a practical technique in CIoT.


بدون دیدگاه