ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
ABSTRACT
The objective was to assess dynamic functional connectivity (FC) and local/global connectivity in Parkinson's disease (PD) patients with mild cognitive impairment (PD-MCI) and with normal cognition (PD-NC). The sample included 35 PD patients and 26 healthy controls (HC). Cognitive assessment followed an extensive neuropsychological battery. For resting-state functional MRI (rs-fMRI) analysis, independent component analysis (ICA) was performed and components were located in 7 networks: Subcortical (SC), Auditory (AUD), Somatomotor (SM), visual (VI), cognitive-control (CC), default-mode (DMN), and cerebellar (CB). Dynamic FC analysis was performed using the GIFT toolbox. FC differences between groups in each FC state were analysed with the network-based statistic (NBS) approach. Finally, a graph-theoretical analysis for local/global parameters was performed. The whole sample showed 2 dynamic FC states during the rs-fMRI. PD-MCI patients showed decreased mean dwell time in the hypo-connectivity state (p = 0.030) and showed increased number of state transitions (p = 0.007) compared with the HC. In addition, in the hypo-connectivity state, PD-MCI patients showed reduced inter-network FC between the SM-CC, SM-VI, SM-AUD, CC-VI and SC-DMN compared with the HC (p < 0.05- FDR). These FC alterations in PD-MCI were accompanied by graph-topological alterations in nodes located in the SM network (p < 0.001). In contrast, no differences were found between the PD-NC and HC. Findings suggest the presence of dynamic functional brain deteriorations in PD-MCI that are not present in PD-NC, showing the PD-MCI group dynamic FC dysfunctions, reduced FC mostly between SM-CC networks and graph-topological deteriorations in the SM network. A dynamic FC approach could be helpful to understand cognitive deterioration in PD.
Conclusions
This is the first study to assess the dynamic FC characteristics in PDMCI and PD-NC. Findings suggest that the temporal connectivity alterations found in PD-MCI such as reduced mean dwell time in the hypo-connected state and reduced state transitions, could be related to the presence of cognitive impairment in PD. Dynamic FC has proven to be a useful approach in the study of PD brain dysfunction, and more research on the disease needs to be done with this technique. Future studies should evaluate the use of dynamic FC to monitor and predict MCI in PD. Moreover, the loss of graph properties in nodes of the SM network could be related to the reduced FC between the SM and other networks in PD-MCI group compared to HC. The combination of neuroimaging approaches such as graph theory and FC analyses could help in the understanding of neurobiological substrates of MCI in PD.