منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله انگلیسی سیگنال بیوالکتریک در بازسازی: مکانیسم کنترل یونیک رشد و فرم - الزویر 2018

عنوان فارسی
سیگنال بیوالکتریک در بازسازی: مکانیسم کنترل یونیک رشد و فرم
عنوان انگلیسی
Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
13
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
نوع مقاله
ISI
نوع نگارش
مقالات مروری
رفرنس
دارد
پایگاه
اسکوپوس
کد محصول
E9889
رشته های مرتبط با این مقاله
مهندسی پزشکی
گرایش های مرتبط با این مقاله
بیوالکتریک
مجله
زیست شناسی تکوینی - Developmental Biology
دانشگاه
Allen Discovery Center - Department of Biology - Tufts University - United States
کلمات کلیدی
بیوالکتریک، کانال یونی، پتانسیل ساکن، ولتاژ، الگوسازی
doi یا شناسه دیجیتال
http://dx.doi.org/10.1016/j.ydbio.2017.08.032
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

ABSTRACT


The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.

نتیجه گیری

Conclusions and next steps


Endogenous bioelectrical states serve as instructive signals in patterning at multiple levels of organization, from single cells to the whole body plan. Vmem gradients specify information such as: initiating modules for complex self-limiting organogenesis (Adams et al., 2007b; Pai et al., 2015b), setting axial polarity (Beane et al., 2011; Durant et al., 2017; Levin, 2006; Oviedo et al., 2010; Stern and MacKenzie, 1983), serving as prepatterns for the layout of large regions (Adams et al., 2016; Pai et al., 2015a; Vandenberg et al., 2011), and even determining the shape and size of structures (Emmons-Bell et al., 2015; Perathoner et al., 2014). Despite the progress that has been made thus far, the field still faces a number of major questions. These include a more in depth understanding of the mechanisms by which cells compare bioelectric state across distances, elucidation of how bioelectric cues interface with chemical gradients and physical forces, and development of quantitative models of bioelectric circuits that are able to store patterning information needed to create complex structures. The ability of bioelectric signaling to direct cell behavior has been described in the literature for over a century, yet only recently are we gaining sufficient insight about mechanisms and global dynamics to enable biomedicine to unlock this valuable information. It is crucial to point out that continued advances in the control of regenerative patterning will require not only increase reductive detail on subcellular molecular pathways, but also integrative work to understand how large-scale pattern is established (and how growth is limited once appropriate anatomy has been restored) by large-scale bioelectrical circuits. Moving forward, researchers need to extend our knowledge about gene regulatory networks and signaling cascades to include information generated at the level of bioelectricity.


بدون دیدگاه