سوالات استخدامی کارشناس بهداشت محیط با جواب
- مبلغ: ۸۴,۰۰۰ تومان
ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
The success or failure of a RIS in a scientific institution is largely related to the quality of the data available as a basis for the RIS applications. The most beautiful Business Intelligence (BI) tools (reporting, etc.) are worthless when displaying incorrect, incomplete, or inconsistent data. An integral part of every RIS is thus the integration of data from the operative systems. Before starting the integration process (ETL) of a source system, a rich analysis of source data is required. With the support of a data quality check, causes of quality problems can usually be detected. Corresponding analyzes are performed with data profiling to provide a good picture of the state of the data. In this paper, methods of data profiling are presented in order to gain an overview of the quality of the data in the source systems before their integration into the RIS. With the help of data profiling, the scientific institutions can not only evaluate their research information and provide information about their quality, but also examine the dependencies and redundancies between data fields and better correct them within their RIS.