دانلود رایگان مقاله انگلیسی یک مدل تحلیلی برای نظارت بر فشار آب منفذی در داخل سدهای خاکی - الزویر 2018

عنوان فارسی
یک مدل تحلیلی برای نظارت بر فشار آب منفذی در داخل سدهای خاکی
عنوان انگلیسی
An analytical model for the monitoring of pore water pressure inside embankment dams
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
10
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E7437
رشته های مرتبط با این مقاله
مهندسی عمران
گرایش های مرتبط با این مقاله
سازه
مجله
سازه های مهندسی - Engineering Structures
دانشگاه
Univ. Grenoble Alpes - CNRS - Grenoble INP1 - 3SR - F-38000 Grenoble - France
کلمات کلیدی
فشار آب منفذی، سدهای ساحلی، تحلیل داده ها نظارتی، اثرات تاخیر، مدل آماری
چکیده

ABSTRACT


The hydraulic behaviour of embankment dams is influenced by many factors, such as hydrostatic loads and settlement. Particularly, the delayed response due to the diffusion phenomena plays a crucial role in the interpretation of the monitoring data gathered in embankment dams. The paper describes a statistical analysis model named EFR (EFfet Retard - Delayed effect), based on the HST (Hydrostatic-Season-Time) model, for the monitoring of pore water pressure inside embankment dams. The model allows separating the influence of the most important factors and takes into account the delayed hydrostatic effect. The use of this model leads to a better estimation of the irreversible trend and enables an earlier detection of abnormal pore water pressures. An application of this model to a French embankment dam is provided in the second part of the paper. Based on this application, the influence of different diffusion models, calculation methods for the equivalent reservoir water levels and the irreversible term versions on the EFR analysis results are discussed.

نتیجه گیری

4. Conclusion


The paper presents an analytical model named EFR (EFfet Retard - Delayed effect) for the prediction of pore water pressure inside embankment dams. This model is able to take into account delayed effects between the changes of reservoir water level and the monitoring device located inside homogeneous dams, due to the hydraulic diffusivity. Applying the model to dam monitoring data permits to obtain the corrected measurements which represent measurements under identical loading conditions over time. These corrected measurements can therefore highlight and quantify the irreversible evolution trends occurring under constant loads. A good estimation of irreversible effect enables us to understand better the evolution response of dam over time and to detect early the abnormal events. At the same time, the delayed hydrostatic effect can be isolated and quantified.


An application of the model to a French embankment dam is provided in the paper. The corrected measurements of pore water pressure are obtained using the equivalent reservoir water level computed with the optimized characteristic time T0. The dispersion of raw measurements has been strongly reduced by applying this model. Particularly, the diffusion models, the numerical methods of computing the equivalent reservoir water level and the different versions of irreversible term are discussed. The results show that both the diffusion models and the numerical methods can perform a good linear regression for the study case, and a linear term is sufficient to model the irreversible effect. Besides, a comparison between the HST and EFR models is carried out and confirmed the good performance of the EFR model.


بدون دیدگاه