دانلود رایگان مقاله انگلیسی روش های تخمین جایگزین برای شناسایی اثرات مخرب در شبکه های اجتماعی پویا - نشریه الزویر

عنوان فارسی
روش های تخمین جایگزین برای شناسایی اثرات مخرب در شبکه های اجتماعی پویا: رویکرد تعدیل شده فضا - پنهان
عنوان انگلیسی
Alternative estimation methods for identifying contagion effects in dynamic social networks: A latent-space adjusted approach
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
17
سال انتشار
2018
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E5838
رشته های مرتبط با این مقاله
مهندسی فناوری اطلاعات
گرایش های مرتبط با این مقاله
اینترنت و شبکه های گسترده، رایانش امن
مجله
شبکه های اجتماعی - Social Networks
دانشگاه
Grado Department of Industrial and System Engineering - Virginia Polytechnic Institute and State University - United States
کلمات کلیدی
اثرات مخرب، نفوذ اجتماعی، روش های برآورد، رویکرد فضا - پنهان
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

abstract


Contagion effects, also known as peer effects or social influence process, have become more and more central to social science, especially with the availability of longitudinal social network data. However, contagion effects are usually difficult to identify, as they are often entangled with other factors, such as homophily in the selection process, the individual’s preference for the same social settings, etc. Methods currently available either do not solve these problems or require strong assumptions. Following Shalizi and Thomas (2011), I frame this difficulty as an omitted variable bias problem, and I propose several alternative estimation methods that have potentials to correctly identify contagion effects when there is an unobserved trait that co-determines the influence and the selection. The Monte-Carlo simulation results suggest that a latent-space adjusted estimator is especially promising. It outperforms other estimators that are traditionally used to deal with the unobserved variables, including a structural equation based estimator and an instrumental variable estimator.

نتیجه گیری

6. Discussion and conclusion


While contagion effects have important implications for both theoretical and empirical studies, they are generally difficult to identify, as influence processes are often entangled with other processes such as selection and environmental factors. Here we show that this entanglement/difficulty can essentially be framed as an omitted variable bias problem, and the methods currently used (e.g. SIENA, propensity score etc.) either do not deal with this problem or require strong assumptions.


In this paper, we propose several alternative estimation methods that have the potential to identify contagion effects when there are omitted variables present, and we use Monte Carlo simulation to test the performance of these estimators. Results show that all three methods proposed generally perform well in terms of recovering the true contagion effects when there is an unobserved variable that codetermines influence and selection. Specifically, a latent space adjustedapproachoutperforms the othermethods that are traditionally used to deal with omitted variable bias problem, including a SEM based approach and an IV based approach: (1) the latent space adjusted approach produces much smaller bias in estimating the lagged dependent variable when T is small and the true coefficient for lagged dependent variable is large; (2) latent space adjusted approach generates slightly smaller bias in estimating the contagion effects than the other two methods in most scenarios; (3) the latent space adjusted approach is generally more efficient than the other methods, especially when T is small.


بدون دیدگاه