دانلود رایگان مقاله حسابداری برای وزن نمونه گیری در مدل سازی مسیر حداقل مربعات جزئی

عنوان فارسی
حسابداری برای وزن نمونه گیری در مدل سازی مسیر حداقل مربعات جزئی: شبیه سازی و نمونه تجربی
عنوان انگلیسی
Accounting for sampling weights in PLS path modeling: Simulations and empirical examples
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
12
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E3242
رشته های مرتبط با این مقاله
مدیریت و علوم اقتصادی
گرایش های مرتبط با این مقاله
مدیریت کسب و کار
مجله
مجله اروپایی مدیریت و اقتصاد کسب و کار - European Journal of Management and Business Economics
دانشگاه
گروه بازاریابی و مدیریت نام تجاری، دانشگاه کلن، آلمان
کلمات کلیدی
PLS مدل سازی مسیر. PLS فله ای (WPLS)، شبیه سازی، نمونه برداری وزن، وزن پس از طبقه بندی، رضایت شغلی؛،تعهد سازمانی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Applications of partial least squares (PLS) path modeling usually focus on survey responses in management, social science, and market research studies, with researchers using their collected samples to estimate population parameters. For this purpose, the sample must represent the population. However, population members are often not equally likely to be included in the sample, which indicates that sampling units have different probabilities of being selected. Hence, sampling (post-stratification) weights should be used to obtain consistent estimates when estimating population parameters. We discuss alterations to the basic PLS path modeling algorithm to consider sampling weights in order to achieve better average population estimates in situations where researchers have a set of appropriate weights. We illustrate the effectiveness and usefulness of the approach with simulations and an empirical example of a job attitude model, using data from Ireland.

مفاهیم و جهت تحقیقات آینده

6. Implications and future research directions


This study proposes a new modified version of the original PLS path modeling approach, namely the WPLS algorithm that incorporates sampling weights. It shows the new approach's appropriateness with an illustrative example and simulated data. The results show that the new modified version takes the specified weights correctly into account. In addition, this algorithm provides better average population model parameter estimates than the basic PLS algorithm when sampling weights are available. In particular, correcting the estimates for deviations in the sampling procedure provides less biased results that are closer to the population parameters. If researchers are interested in inference to the population, they should ensure that they correct the sampling deviations of their data set, as well as ensure that they use sampling procedures that allow them to draw these conclusions. The empirical examples' results also show the importance of applying sampling weights in model estimations. For example, applying the sampling weights available in the ISSP Work Orientations 2005 to a simple job attitude model shows that drawing conclusions could be misleading when weights are not included in the model estimation. In particular, the results show that although applying the weighting does not alter the measurement model evaluation's results, the structural model results are substantially different in the weighted and unweighted models. Not only was a significant path in the nonweighted model found to be nonsignificant in the weighted model, but the magnitude of the path coefficients may also change substantially. This deviation can have consequences for the theoretical and managerial implications drawn from the analysis.


بدون دیدگاه