ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
It is often necessary to investigate the output power against load demand in a system having distributed generation (DG) resources connected to the existing conventional power system. In this paper, the load frequency control (LFC) problem is presented using different optimization algorithms for two types of power system configurations: (i) hybrid configuration of thermal power system (TPS) integrated with DG, comprising wind turbine generators (WTGs), diesel engine generators (DEGs), fuel cells (FCs), aqua-electrolyzer (AE) and battery energy storage system (BESS); (ii) two area interconnected power system with DG connected in area-1. The inclusion of wind energy system in DG, having high variability in its output power, results into a challenging task for the realization of an effective controller design. This difficulty is further enhanced with random variation of load demand. The control scheme proposed in this paper is based on linear matrix inequalities (LMI) with its parameters tuned by particle swarm optimization (PSO), as a new contribution to earlier studies. The robustness of this controller is thoroughly demonstrated in the above hybrid power systems with different conditions of load disturbances, wind power and parameter variations.