منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله زمان تجزیه مقیاس در سیستم واکنش پیچیده: تحلیل نظری نمودار

عنوان فارسی
زمان تجزیه مقیاس در سیستم واکنش پیچیده: تجزیه و تحلیل نظری نمودار
عنوان انگلیسی
Time scale decomposition in complex reaction systems: A graph theoretic analysis
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
12
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E3063
رشته های مرتبط با این مقاله
شیمی
گرایش های مرتبط با این مقاله
شیمی کاربردی
مجله
کامپیوتر و مهندسی شیمی - Computers and Chemical Engineering
دانشگاه
دانشکده مهندسی شیمی و علم مواد، دانشگاه مینه سوتا، ایالات متحده آمریکا
کلمات کلیدی
نظریه گراف، کاهش مدل، گراف دو بخشی، یکسان
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


The formulation of a kinetic model for a complex reaction network typically yields reaction rates which vary over orders of magnitude. This results in time scale separation that makes the model inherently stiff. In this work, a graph-theoretic framework is developed for time scale decomposition of complex reaction networks to separate the slow and fast time scales, and to identify pseudo-species that evolve only in the slow time scale. The reaction network is represented using a directed bi-partite graph and cycles that correspond to closed walks are used to identify interactions between species participating in fast/equilibrated reactions. Subsequently, an algorithm which connects the cycles to form the pseudo-species is utilized to eliminate the fast rate terms. These pseudo-species are used to formulate reduced, non-stiff kinetic models of the reaction system. Two reaction systems are considered to show the efficacy of this framework in the context of thermochemical and biochemical processing.

نتیجه گیری

4. Conclusion


A graph-theoretic framework is developed to generate non-stiff non-linear reducedmodels.Within this framework, a set of pseudospecies that evolve only in the slow time scale are generated as a linear combination of original species via a cycle identification procedure. A reduced model is formulated using these pseudospecies and algebraic constraints arising from fast/equilibrated reactions. The incorporation of complete conversion or quasiequilibrium constraints allows a reduction in the number of model parameters. The efficacy of the developed framework is illustrated through application on two chemical systems. The cracking reaction scheme of 1-butene over zeolite acids was studied and an order of magnitude reduction in the number of integration steps was observed by incorporating quasi-equilibrium constraints. Further, the trade-off between the accuracy and the computational complexity of the resulting reduced models for carbon metabolism in erythrocytes system was studied by gradually relaxing the criteria for identifying fast/equilibrated reactions. The developed graph-theoretic framework is an automatic, generic procedure that generates non-stiff reduced models of isothermal reaction systems.


بدون دیدگاه