ترجمه مقاله مقایسه SDSM و LARS-WG از نظر شبیه سازی و ریزمقیاس نمایی – نشریه اشپرینگر

عنوان فارسی: | مقایسه SDSM و LARS-WG از نظر شبیه سازی و ریزمقیاس نمایی رویدادهای بارش کرانه ای در یک آبخیز |
عنوان انگلیسی: | Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed |
تعداد صفحات مقاله انگلیسی : 10 | تعداد صفحات ترجمه فارسی : 19 |
سال انتشار : 2011 | نشریه : اشپرینگر - Springer |
فرمت مقاله انگلیسی : PDF | فرمت ترجمه مقاله : ورد تایپ شده |
کد محصول : 9250 | رفرنس : دارد |
محتوای فایل : zip | حجم فایل : 2.22Mb |
رشته های مرتبط با این مقاله: جغرافیا |
گرایش های مرتبط با این مقاله: آب و هوا شناسی، تغییرات آب و هوایی اقلیمی |
مجله: تحقیقات محیطی تصادفی و ارزیابی ریسک - Stochastic Environmental Research and Risk Assessment |
دانشگاه: گروه مهندسی عمران و محیط زیست، دانشگاه اوکلند، نیوزیلند |
کلمات کلیدی: مدلهای اقلیم جهانی، ریزمقیاس نمایی آماری، ژنراتور هوا، توزيع مقدار کرانه ای تعمیم یافته |
وضعیت ترجمه عناوین تصاویر و جداول: ترجمه شده است |
وضعیت ترجمه متون داخل تصاویر و جداول: ترجمه نشده است |
وضعیت فرمولها و محاسبات در فایل ترجمه: به صورت عکس، درج شده است |
چکیده
1. مقدمه
2. مطالعه آبخیز مورد نظر و منبع جمع آوری داده ها
3. متدولوژی
3.1. کاربرد مدل ریزمقیاس نمایی آماری
3.2. کاربرد مولد هواشناسی ایستگاه تحقیقاتی (Long Ashton (LARS – WG
3.3. آنالیز نوسانات بارش
4. نتایج و بحث
5. نتیجه گیری
Abstract
Future climate projections of Global Climate Models (GCMs) under different emission scenarios are usually used for developing climate change mitigation and adaptation strategies. However, the existing GCMs have only limited ability to simulate the complex and local climate features, such as precipitation. Furthermore, the outputs provided by GCMs are too coarse to be useful in hydrologic impact assessment models, as these models require information at much finer scales. Therefore, downscaling of GCM outputs is usually employed to provide fine-resolution information required for impact models. Among the downscaling techniques based on statistical principles, multiple regression and weather generator are considered to be more popular, as they are computationally less demanding than the other downscaling techniques. In the present study, the performances of a multiple regression model (called SDSM) and a weather generator (called LARS-WG) are evaluated in terms of their ability to simulate the frequency of extreme precipitation events of current climate and downscaling of future extreme events. Areal average daily precipitation data of the Clutha watershed located in South Island, New Zealand, are used as baseline data in the analysis. Precipitation frequency analysis is performed by fitting the Generalized Extreme Value (GEV) distribution to the observed, the SDSM simulated/downscaled, and the LARS-WG simulated/ downscaled annual maximum (AM) series. The computations are performed for five return periods: 10-, 20-, 40-, 50- and 100-year. The present results illustrate that both models have similar and good ability to simulate the extreme precipitation events and, thus, can be adopted with confidence for climate change impact studies of this nature.
چکیده
پروژه های اقلیمی آینده با مدلهای اقلیم جهانی تحت عنوان GCMs، تحت سناریوهای انتشار مختلف، معمولاً در ریزمقیاس نمایی داده ها، برای کاهش بیشتر اثرات تغییراقلیم و استراتژیهای انطباقی، بکار میروند. درهر حال، این GCM ها یا مدلهای اقلیم جهانی توانایی شبیه سازی موقعیتهای اقلیمی محلی و پیچیده مثل فرایند بارش را ندارند. علاوه براین خروجی های ایجاد شده از مدل GCM ناهمگون تر از آن هستند که در مدلهای ارزیابی اثر هیدرولوژیکی مفید واقع شوند زیرا این مدل ها نیاز به اطلاعاتی در مقیاس بسیار کوچکتر دارند. بنابراین ریزمقیاس نمایی خروجیهای GCM معمولاً برای ایجاد اطلاعات ریز-تفکیک که برای مدلهای اثر تغییراقلیم لازم میباشند بکار میروند. در این مقاله از بین تکنیک های ریزمقیاس نمایی براساس قواعد آماری، تکنیک رگرسیون چندگانه و مولد هواشناسی بدلیل اینکه از نظر محاسباتی از دیگر تکنیکها راحت تر هستند، انتخاب میشوند. در این مقاله عملکرد یک مدل رگرسیونی چندگانه (که SDSM نامیده میشود) و یک مولد هواشناسی (که LARS-WG نامیده میشود) براساس قابلیتشان در شبیه سازی نوسانات بارش کرانه ای اقلیمی و ریزمقیاس نمایی رویدادهای کرانه ای آینده ارزیابی میگردند. میانگین محلی داده های بارش روزانه حوضه آبخیز Clutha، در جزیره جنوبی منطقه نیوزیلند، بصورت داده های مبنا برای مطالعه و آنالیز استفاده میشوند. بررسی نوسان بارش از طریق توزیع اتصال مقدار کرانه ای تعمیم یافته (GEV) به مقدار واقعی، SDSM شبیه سازی شده / ریزمقیاس شده و LARS-WG شبیه سازی شده / ریزمقیاس شده سریهای ماکزیمم سالانه (AM) انجام میشود. محاسبات در 5 دوره بازگشت انجام میشوند: دوره های 10، 20، 40، 50 و 100 ساله. نتایج بدست آمده در این مقاله نشان میدهند که هردو مدل ، توانایی مشابه و خوبی برای شبیه سازی رویدادهای بارشی دارند و بنابراین میتوانند بطور قطع با مطالعه اثرات تغییراقلیم این ناحیه سازگاری حاصل کنند.