منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله بهینه سازی توپولوژی پاسخ دینامیکی غیر خطی با روش بارهای استاتیک معادل

عنوان فارسی
بهینه سازی توپولوژی پاسخ دینامیکی غیر خطی با استفاده از روش بارهای استاتیک معادل
عنوان انگلیسی
Nonlinear dynamic response topology optimization using the equivalent static loads method
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
15
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E808
رشته های مرتبط با این مقاله
مهندسی مکانیک و ریاضی
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
یک موسسه تحقیقاتی فنی و مهندسی، دانشگاه هانیانگ، جمهوری کره
کلمات کلیدی
بهینه سازی توپولوژی پاسخ دینامیکی غیر خطی، بهینه سازی سازه، بارهای استاتیکی معادل
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


A novel method for nonlinear dynamic response topology optimization is proposed using the equivalent static loads (ESLs) method. The ESLs are the loads that generate the same response field of linear static analysis as that of nonlinear dynamic analysis at each time step. In the proposed procedure, nonlinear dynamic analysis is performed, ESLs are made and linear static topology optimization is carried out with the ESLs. The process cyclically proceeds until the convergence criterion, which is specifically defined for this problem, is satisfied. Since the density method for topology optimization is utilized, the low-density finite elements can cause mesh distortion in nonlinear dynamic analysis. Transformation variables are introduced for a new update method for the incorporating process of the topology results into nonlinear dynamic analysis. Also, a new objective function is proposed to minimize the peaks of the time dependent transient responses. A couple of standard problems and a practical problem are solved to validate the proposed method.

نتیجه گیری

5. Conclusions


Nonlinear dynamic response topology optimization is performed using ESLSO with the transformation variables and the newly defined objective function. In ESLSO, nonlinear analysis is performed, ESLs are generated at each time step, linear static response topology optimization is carried out the ESLs and the process cyclically proceeds until the convergence criteria are satisfied. The transformation variables which correspond to the design variables are defined to overcome the mesh distortion problem that is a typical obstacle in nonlinear response topology optimization. After linear static response topology optimization, if the value of a design variable is smaller than a certain value, the corresponding transformation variable is 0. Otherwise, the corresponding transformation variable is 1. The elements for the transformation variables with zeros are eliminated in the FE model for nonlinear dynamic response analysis. The proposed objective function is to minimize the weighted summation compliance near the peak points to prevent a large deformation at a certain time. The newly proposed ESLSO is applied to two examples that are a simple plate structure and the crash box for the crashworthiness design. The results show that the proposed method provides quite an excellent solution. It is well known that nonlinear dynamic response optimization is quite expensive for a large scale structure. The results of the examples show that the process terminates in a few cycles with ESLSO. It means that only a few nonlinear dynamic analyses are required. Additional research is needed as well. For example, a technique to determine the separation parameter for the transformation variable should be established, or various responses such as the stresses and eigenvalues should be considered in the objective function or constraints.


بدون دیدگاه