دانلود رایگان مقاله انگلیسی الگوریتم خوشه بندی متشکل از مراکز نیمه خوشه ای بر اساس آنتروپی و توزیع همبستگی تصادفی توزیع t - اشپرینگر 2018

عنوان فارسی
الگوریتم خوشه بندی متشکل از مراکز نیمه خوشه ای بر اساس آنتروپی بالقوه و توزیع همبستگی تصادفی توزیع t
عنوان انگلیسی
Quasi-cluster centers clustering algorithm based on potential entropy and t-distributed stochastic neighbor embedding
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
13
سال انتشار
2018
نشریه
اشپرینگر - Springer
فرمت مقاله انگلیسی
PDF
کد محصول
E7611
رشته های مرتبط با این مقاله
مهندسی کامپیوتر و فناوری اطلاعات
گرایش های مرتبط با این مقاله
مهندسی الگوریتم ها و محاسبات، شبکه های کامپیوتری
مجله
محاسبات نرم - Soft Computing
دانشگاه
School of Information Science and Technology - Zhejiang Sci-Tech University - Hangzhou - China
کلمات کلیدی
خوشه بندی اطلاعات، خوشه بندی مراکز نیمه خوشه ای، آنتروپی بالقوه، پارامتر بهینه، توزیع تصادفی T، همسایه
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


A novel density-based clustering algorithm named QCC is presented recently. Although the algorithm has proved its strong robustness, it is still necessary to manually determine the two input parameters, including the number of neighbors (k) and the similarity threshold value (α), which severely limits the promotion of the algorithm. In addition, the QCC does not perform excellently when confronting the datasets with relatively high dimensions. To overcome these defects, firstly, we define a new method for computing local density and introduce the strategy of potential entropy into the original algorithm. Based on this idea, we propose a new QCC clustering algorithm (QCC-PE). QCC-PE can automatically extract optimal value of the parameter k by optimizing potential entropy of data field. By this means, the optimized parameter can be calculated from the datasets objectively rather than the empirical estimation accumulated from a large number of experiments. Then, t-distributed stochastic neighbor embedding (tSNE) is applied to the model of QCC-PE and further brings forward a method based on tSNE (QCC-PE-tSNE), which preprocesses high-dimensional datasets by dimensionality reduction technique. We compare the performance of the proposed algorithms with QCC, DBSCAN, and DP in the synthetic datasets, Olivetti Face Database, and real-world datasets respectively. Experimental results show that our algorithms are feasible and effective and can often outperform the comparisons.

نتیجه گیری

5 Conclusions


This paper proposes a QCC-PE clustering algorithm, which focuses on the global relationship between all points on the basis of QCC and weakens the weight of k nearest neighbor in computing local density. To this end, a new method for calculating density is designed. QCC-PE can automatically determine optimal parameter k using potential entropy. Dedicated to applying to high-dimensional datasets, we incorporate the idea of dimensionality reduction which is based on t-distributed stochastic neighbor embedding and further propose QCC-PE-tSNE to improve QCC-PE. The experimental results on considerable amount of datasets demonstrate that the proposed algorithms achieve gratifying results and exhibit a promising performance advantage.


بدون دیدگاه