دانلود رایگان مقاله انترپولاسیون محلی با کیفیت بالا با سطوح پارامتریک کامپوزیت

عنوان فارسی
انترپولاسیون محلی با کیفیت بالا با سطوح پارامتریک کامپوزیت
عنوان انگلیسی
High quality local interpolation by composite parametric surfaces
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
22
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E560
رشته های مرتبط با این مقاله
ریاضی و مهندسی کامپیوتر
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
طراحی هندسی به کمک کامپیوتر - Computer Aided Geometric Design
دانشگاه
گروه ریاضی، دانشگاه پادووا، ایتالیا
کلمات کلیدی
انترپولاسیون محلی، پارامتری غیر یکنواخت، سطح، توپولوژی دلخواه، شبکه منحنی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


In CAGD the design of a surface that interpolates an arbitrary quadrilateral mesh is definitely a challenging task. The basic requirement is to satisfy both criteria concerning the regularity of the surface and aesthetic concepts. With regard to aesthetic quality, it is well known that interpolatory methods often produce shape artifacts when the data points are unevenly spaced. In the univariate setting, this problem can be overcome, or at least mitigated, by exploiting a proper non-uniform parametrization, that accounts for the geometry of the data. Recently the same principle has been generalized and proven to be effective in the context of bivariate interpolatory subdivision schemes. In this paper, we propose a construction for parametric surfaces of good aesthetic quality and high smoothness interpolating quadrilateral meshes of arbitrary topology. In the classical tensor product setting the same parameter interval must be shared by an entire row or column of mesh edges. Conversely, in this paper, we assign a different parameter interval to each mesh edge. This particular structure, which we call an augmented parametrization, allows us to interpolate each section polyline at parameters values that prevent wiggling of the resulting curve or other interpolation artifacts and yields high quality interpolatory surfaces. The proposed method is generalization of the local univariate spline interpolants introduced in Beccari et al. (2013a) and Antonelli et al. (2014), that have arbitrary continuity and arbitrary order of polynomial reproduction. The generated surfaces retain the same smoothness of the underlying class of univariate splines in the regular regions of the mesh (where, locally, all vertices have valence 4). Mesh regions containing vertices of valence other than 4 are covered with suitably defined surface patches joining the neighboring regular ones with G1- or G2-continuity.

نتیجه گیری

5. Conclusion


We have presented a local construction for interpolatory composite surfaces, which is based on the use of univariate spline interpolants having degree g, continuity Ck, polynomial reproduction degree m and support width w. Thanks to the augmented parametrization, each section curve is parameterized independently of the others and in the most appropriate way. Away from the extraordinary vertices the generated surfaces retain the same smoothness of the underlying class of univariate splines. Surface regions surrounding extraordinary vertices have been generated by means of a modified form of Coons–Gregory patches, joining with G1 or G2 continuity the regular portion of the surface. The obtained surfaces are aesthetically well-behaved, as we have demonstrated by several numerical examples concerning both regular and extraordinary meshes. We postpone to a future work a more thorough investigation of other possible methods for patching extraordinary vertices. Using the augmented parametrization in different contexts is another topic worthy of consideration. For example, there is no problem (in principle) in applying the augmented parametrization with standard B-splines, and its extension to more general techniques of surface generation may also be of interest.


بدون دیدگاه