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In CAGD the design of a surface that interpolates an arbitrary quadrilateral mesh is 
definitely a challenging task. The basic requirement is to satisfy both criteria concerning 
the regularity of the surface and aesthetic concepts.
With regard to aesthetic quality, it is well known that interpolatory methods often produce 
shape artifacts when the data points are unevenly spaced. In the univariate setting, this 
problem can be overcome, or at least mitigated, by exploiting a proper non-uniform 
parametrization, that accounts for the geometry of the data. Recently the same principle 
has been generalized and proven to be effective in the context of bivariate interpolatory 
subdivision schemes.
In this paper, we propose a construction for parametric surfaces of good aesthetic quality 
and high smoothness interpolating quadrilateral meshes of arbitrary topology. In the 
classical tensor product setting the same parameter interval must be shared by an entire 
row or column of mesh edges. Conversely, in this paper, we assign a different parameter 
interval to each mesh edge. This particular structure, which we call an augmented 
parametrization, allows us to interpolate each section polyline at parameters values that 
prevent wiggling of the resulting curve or other interpolation artifacts and yields high 
quality interpolatory surfaces.
The proposed method is generalization of the local univariate spline interpolants introduced 
in Beccari et al. (2013a) and Antonelli et al. (2014), that have arbitrary continuity 
and arbitrary order of polynomial reproduction. The generated surfaces retain the same 
smoothness of the underlying class of univariate splines in the regular regions of the mesh 
(where, locally, all vertices have valence 4). Mesh regions containing vertices of valence 
other than 4 are covered with suitably defined surface patches joining the neighboring 
regular ones with G1- or G2-continuity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The construction of parametric curves and surfaces interpolating a given set of points is a central topic in computer-aided 
geometric design. In 2D, the data points are the vertices of a control polygon, whereas in 3D they are the vertices of a control 
polyhedron (also called a mesh). In this context, a “good” interpolant is one that faithfully mimics the shape suggested by 
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Fig. 1. Cubic (global) spline interpolation of unevenly spaced data. The uniform parametrization fails whereas a proper non-uniform parametrization yields 
a good interpolant.

the input data: this means, e.g., that it does not present self intersections, nor it bends to much or it is too tight in relation 
to the given control polygon or polyhedron.

Concerning univariate interpolation, it is well known that a proper choice of parametrization is crucial to obtain good 
quality curves interpolating unevenly spaced data (basic references are Farin, 2002; Farin et al., 2002). In particular, a uni-
form parametrization may give rise to noticeable interpolation artifacts, since it does not account for the geometry of the 
data. These artifacts often disappear, or are greatly mitigated, when a suitable non-uniform parametrization is used (Fig. 1
is an example).

Although there is probably no “best” parametrization, since any method can be defeated by a suitably chosen data set, 
some techniques produce good results in the majority of critical cases. One of the most effective (Lee, 1989; Floater, 2008;
Yuksel et al., 2011), and probably the most used, is the centripetal parametrization. Alongside this, it is worth mentioning 
the Nielson–Foley parametrization (Foley and Nielson, 1989) and the recent method proposed in Fang and Hung (2013), 
which, in some cases, shows better performance than the previous ones.

Compared to global interpolation, local techniques are more prone to generating shape artifacts and, as a consequence, 
they suffer even more from a poor choice of parametrization. On the other hand, local methods are more efficient in that 
they do not involve solving systems of linear equations, which can readily be of large dimension when complex surfaces 
have to be generated. Moreover, editing or addition of data can be handled by updating the model only locally.

How to construct of local spline interpolants with specific properties and non-uniform parametrization has long been 
an open question. This could be one of the reasons why, so far, local interpolation methods have had low uptake in com-
puter design applications. In the univariate setting, a general approach for solving the problem has been recently developed 
in Beccari et al. (2013a), Antonelli et al. (2014). The method allows for choosing an arbitrary support width and, corre-
spondingly, constructing various classes of local spline interpolants that differ one from another in their degree, continuity 
and approximation order. In this way, one can pick the interpolating spline with properties best suited to the context of 
application. The popular Catmull–Rom splines (Catmull and Rom, 1974), as well as other types of previously appeared 
local interpolants (a non-exhaustive list includes (Chui and De Villiers, 1996; Blu et al., 2003; Becerra Sagredo, 2003;
Ueno et al., 2007; Han, 2011)) are special instances of the construction.

In this paper we generalize the univariate local interpolatory splines in Beccari et al. (2013a), Antonelli et al. (2014) to 
the bivariate setting. Using these splines and a new parametrization technique we show how generate parametric surfaces 
of good aesthetic quality and high smoothness.

To achieve our goal, the main hurdle is represented by the need for defining a non-uniform parametrization that pre-
serves the good quality of the local interpolants, when generalizing from the univariate to the bivariate setting. We shall 
start by considering the case of a regular mesh, where each vertex has exactly 4 incident edges. In this case, the standard 
approach is to construct a tensor product surface from the univariate splines that one wishes to use. Being uv the para-
metric domain, the tensor product requires the generation of one set of parameter values for all isoparametric curves in the 
u-direction; the same holds for the v-direction. For finding such a parametrization, the most reasonable way of proceed-
ing is to create a good parametrization for each isoparametric curve using a suitable method, such as, e.g. the centripetal 
parametrization, and then average these parameterizations to yield one. This approach will only produce acceptable results 
if all the isoparametric curves essentially have the same parametrization. Conversely, when the data points significantly 
deviate from a regular grid, it will result in a poor choice in parameters. The isoparametric curves will unnaturally wiggle, 
and this defect will negatively impact the quality of the surface (see, e.g. Farin et al., 2002, §7.5.1).

The above discussion suggests that the classical idea of averaging the parametrization should be avoided. Hence we take 
another avenue. In particular we assign a parameter interval to each mesh edge, without requiring that the same parameter 
interval be shared by an entire row or column of mesh edges. We call such a parametrization an augmented parametrization.

A similar parametrization concept has previously been exploited in the context of subdivision schemes. It was initially 
proposed for Catmull–Clark surfaces (Sederberg et al., 1998; Cashman et al., 2009; Müller et al., 2006, 2010), yielding greater 
control over the shape of free-form objects and special features such as crease edges. In fact, the term “augmented” was 
firstly used in Müller et al. (2006). More recently, the augmented parametrization has also been used in the context of 
interpolatory subdivision schemes (Beccari et al., 2013b). The subdivision method in Beccari et al. (2013b) allows for inter-
polating each section polyline of the mesh at independent parameter values and generates surfaces of far superior aesthetic 
quality compared to their uniform or tensor-product counterparts. Unfortunately, it is subject to the typical issues of in-
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terpolatory subdivision schemes: the resulting surfaces cannot be evaluated at arbitrary parameters and are C1 continuous 
only.

The construction of the local interpolatory surfaces proposed in this paper proceeds as follows. We start by assuming 
that a suitable parametrization has been computed for each section polyline of the mesh. Accordingly, a different parameter 
interval is assigned to each mesh edge, thus yielding an augmented parametrization. Next, we choose a class of local uni-
variate spline interpolants – based on the desired smoothness, order of polynomial reproduction and support width – and 
construct a composite surface that contains all the interpolatory curves of this class generated from the section polylines 
with the individual parameterizations. In this way, every section polyline is interpolated at the parameter values that guar-
antee the best quality of the resulting section curve and the generated surface turns out to be aesthetically well-behaved. We 
prove that, if the underlying univariate splines are Ck continuous, then the surface is globally Gk (meaning that derivatives 
agree after suitable reparametrization (Perters, 2002)). As a consequence, the composite surface retains the good properties 
of the corresponding univariate splines.

Oppositely to global interpolation techniques, the considered approach does not require to solve large systems of linear 
equations and allows for local editing of the generated surfaces. Moreover, unlike other local methods, it does not require 
to supply additional input data. Indeed, a typical drawback of local constructions, such as the popular Coons patches, is the 
need for prescribing cross-boundary derivatives and twist vectors, which are generally heuristically estimated. As a result 
only G1 or G2 Coons patches have been used so far, whereas the surfaces proposed in this paper can have higher continuity.

An important consequence of the locality of the proposed construction is that the method can relatively easily be ex-
tended to handle meshes with extraordinary vertices (namely vertices of valence different than 4). Applying the above 
interpolation scheme wherever possible (that is away from the extraordinary vertices) will generate a surface with “holes” 
around the extraordinary vertices. Across the boundary of such holes, the tangent field (and higher order derivative fields) 
are determined by the surrounding regular patches and, as a consequence of the augmented parametrization, they change 
at every boundary point in a peculiar way. The missing part of the surface shall be defined in such a way to interpolate the 
existing derivative fields up to reasonable order of continuity.

The general problem of how to fill the hole around an extraordinary vertex is an active research topic even in the 
case of uniform parametrization. Recent developments include Várady et al. (2011), Salvi et al. (2014), Salvi and Várady
(2014), where transfinite multi-sided patches are generated by interpolating derivative ribbons. Moreover, a whole branch of 
research is devoted to the problem of filling an n-sided hole in a tensor product bi-cubic spline surface. Early constructions, 
such as Prautzsch (1997), produce a G2 covering of the hole by bi-sextic surface patches, but are not focused on shape 
quality. To generate aesthetically well-behaved G2 splines, a bi-septic construction based on minimizing a suitable energy 
functional is presented in Loop and Schaefer (2008). In Karc̆iauskas and Peters (2015) a G1 piecewise bi-quintic surface 
patch is developed to fill the n-sided hole in a piecewise bi-cubic tensor-product spline surface with optimized curvature 
distribution.

Our main point here is not to provide a one-stop solution, but to demonstrate how to obtain good quality lo-
cal interpolating surfaces by exploiting, in synergy, the augmented parametrization, the regular patches described above 
and a local patching scheme for extraordinary vertices. We will address this issue by mans of either G1 Coons–
Gregory patches (Gregory, 1974; Hoschek and Lasser, 1993; Farin, 2002) and their G2 version (Miura and Wang, 1991;
Hermann, 1996). In both cases, we will see how to suitably tweak the definition of the patches, in order to interpolate 
the desired boundary information. This will allow us to generate augmented surfaces that interpolate a mesh containing 
extraordinary vertices, have arbitrary smoothness in the regular regions, and are G1 or G2 continuous in the extraordinary 
regions.

We would like to remark that the research reported in this paper was supported by the European Eurostars project 
NIIT4CAD, aimed at the development of new technologies for modeling arbitrary topology surfaces within CAD systems. 
One of the advanced objectives of the project was to construct local interpolatory surfaces suitable for integration in a CAD 
system and this paper is a part of such a study.

The remainder of the paper is organized as follows. In Section 2 we recall the univariate local spline interpolants pre-
sented in Beccari et al. (2013a), Antonelli et al. (2014). For regular input meshes, in Section 3 we introduce the augmented 
parametrization and the construction of local interpolatory surfaces, also discussing their relevant properties. Section 3.1
presents some application examples to demonstrate the effectiveness of the method and its better performance compared 
to the classical tensor product approach. In Section 4 we address the problem of patching the extraordinary regions of 
the mesh by G1 and G2 augmented Coons–Gregory patches. Section 4.3 illustrates a possible approach to generate the 
boundary curves and cross-boundary derivative fields needed for the definition of these patches, when this information is 
not available. Section 4.4 presents examples of augmented surfaces containing extraordinary vertices and finally Section 5
summarizes the results achieved and suggests some topics for future research.

2. Local, non-uniform, univariate spline interpolation

Given a sequence of points p0, p1, . . . , pN in Rn , n ≥ 2, where p j and p j+1 are distinct and pN = p0, and an associated 
sequence of parameter values x0 < x1 < · · · < xN , we consider the periodic spline curve F : [x0, xN ] →Rn defined as

F (x) =
∑

pi ψi(x). (1)

i
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Fig. 2. (a) Fundamental function ψi of the class D3C1 P 2 S4, with the different pieces represented in different colors. (b) The fundamental functions of the 
class D3C1 P 2 S4 that are nonzero in the interval [xs, xs+1]. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

In the above formula, ψi : [x0, xN ] →R are fundamental spline functions, namely they are piecewise functions on the partition 
{x j} such that ψi(x j) = δi, j . Since we are interested in local interpolation, we require that every ψi has compact support, 
namely that it is nonzero in a finite number of parametric intervals. In this way, when the data points are in Rn , n = 2, 3, 
formula (1) represents a parametric curve that locally interpolates the given data.

In the remainder of the paper, we suppose that the fundamental functions ψi have even support width w , namely

ψi(x) = 0, x /∈ [xi− w
2
, xi+ w

2
].

This assumption guarantees that the interpolating splines in (1) preserve possible symmetries in the data and allows us to 
consistently simplify the notation that will be introduced later on.

Confining ourselves to polynomial splines, the characterizing properties of the fundamental functions are degree, conti-
nuity, maximum degree of polynomials that can be reproduced (this is equal to the approximation order minus one) and 
support width. Obviously, these properties of are inherited by the parametric interpolant F .

A general method for constructing local interpolatory splines with specific properties and non-uniform parametrization 
has recently been developed in the Beccari et al. (2013a), Antonelli et al. (2014). In that framework, we can choose an 
arbitrary support width and, correspondingly, construct various classes of spline interpolants of the form (1) that differ one 
from another in their degree, continuity and approximation order. Special instances of such splines are Catmull–Rom splines 
(Catmull and Rom, 1974), as well as other types of local interpolants including those in Chui and De Villiers (1996), Blu et 
al. (2003), Becerra Sagredo (2003), Ueno et al. (2007), Han (2011). Adopting the notation in Beccari et al. (2013a), Antonelli 
et al. (2014), we indicate a class of splines having Degree g , Continuity order k, Polynomial reproduction degree m and 
Support width w by the shorthand notation D g Ck Pm S w . Tables 1, 2, and 3 in Beccari et al. (2013a) and Table 2 in Antonelli 
et al. (2014) summarize the different classes that we can construct for the most usual choices of support width, namely 4, 
6 and 8. Some examples with w = 4 include the families D3C0 P 3 S4, D3C1 P 2 S4, D4C2 P 1 S4, D5C2 P 2 S4 from Beccari et al.
(2013a) and D2C1 P 2 S4 or D3C2 P 2 S4 from Antonelli et al. (2014). Even more families of splines can be found widening the 
support width to 6 or 8.

We now introduce a convenient notation, emphasizing the local dependence on data and parameters, which will be 
useful in generalizing the above framework to the bivariate case. To this aim, we shall observe that in each parametric 
interval there are exactly w nonzero fundamental functions, each of which depends on a sequence of w − 1 parameter 
intervals of the form

di = xi+1 − xi . (2)

As a consequence, the vector

d =
(

ds− w
2 +1, . . . ,ds, . . . ,ds+ w

2 −1

)
, (3)

contains all the information necessary to evaluate F in [xs, xs+1]. We call such a vector the local parameter vector relative to 
[xs, xs+1] (or, equivalently, relative to ps ps+1). Mapping the interval [xs, xs+1] to [0, ds], the segment of F bounded by ps
and ps+1 can now be written as

F (x)
∣∣[0,ds] =

s+ w
2∑

i=s− w
2 +1

pi ψi(x,d), (4)

where ψi(x, d) is the restriction of ψi(x) to [xs, xs+1] expressed in terms of the sequence of parameter intervals (3).
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As an example of our setting and notation, we provide in Appendix A the expressions for the well-known Catmull–Rom 
splines (Catmull and Rom, 1974), corresponding to the class D3C1 P 2 S4 in Beccari et al. (2013a), also represented in Fig. 2. 
To facilitate the reader in reproducing the examples proposed in the following sections, we also list in appendix the funda-
mental functions D5C2 P 2 S4. The latter are an interesting application of the approach in Beccari et al. (2013a), since they 
have high continuity, in spite of a very limited support. Moreover, given our focus on interpolating 3-dimensional data, it 
may also be useful to consider splines with continuity C3, or higher, and some graphical examples will be presented in the 
forthcoming sections. As it can reasonably be expected, in this case the explicit expression of the fundamental functions is 
more complicated. Nevertheless, the evaluation of a spline interpolant can still be performed in a computationally efficient 
way as discussed in Beccari et al. (2013a), Antonelli et al. (2014).

As recalled in the previous section, the choice of the parameter sequence {x j} has a large influence on the shape of 
an interpolating spline curve and various and effective methods to automatically compute the values {x j } exist, such as 
Ahlberg et al. (1967), Lee (1989), Foley and Nielson (1989), Fang and Hung (2013). Since the focus of this paper is not on 
comparing different parametrization techniques, we will make use of the centripetal parametrization, which is acknowledged 
to produce good results for the majority of critical data sets. According to the centripetal parametrization, fixed x0, the 
subsequent x j , j = 1, . . . , N are computed through

xi+1 = xi + ∥∥pi+1 − pi

∥∥α

2 , (5)

with α = 1
2 and ‖·‖2 denoting the Euclidean norm. It is therefore clear that the parameter values depend on the geometry 

of the interpolation points. From (5), the chordal and uniform parameterizations can also be obtained by setting respectively 
α = 1 and α = 0 (Farin, 2002; Farin et al., 2002).

In the following section we generalize the considered interpolants to the bivariate setting. Before proceeding, we need to 
remark that our assumption to work with periodic data has the sole purpose of simplifying the presentation. Open curves 
can similarly be defined, provided that “special” fundamental functions are used in order to evaluate (1) in the boundary 
intervals (Antonelli et al., 2014). These fundamental functions can be determined so as to interpolate the derivatives of F
up to suitable order at x0 and xN . The surface construction developed in the following section can be adapted to handle 
open data sets along the same lines of the univariate case.

3. Local interpolation of regular meshes by high quality surfaces with arbitrary continuity

In this section we develop a local method to generate interpolatory surfaces of good quality and high order of continuity 
from regular input meshes. In the present context, a surface of “good quality” is one that faithfully resembles the shape 
suggested by the input data and does not present undesired interpolation artifacts. The approach is based on the previously 
recalled univariate spline interpolants and on a proper technique of parametrization. As will be proved in the following, the 
resulting surfaces are Gk-continuous when constructed upon a class of fundamental functions of type D g Ck P g S w .

A regular mesh is one where every vertex belongs to four edges (and faces) and can thus be seen as a rectangular grid 
of 3D points, whose edges are associated with two independent domain directions. We say that two edges are opposite
when they have no vertex in common and they belong to the same face, whereas we say that two edges are adjacent when 
they have one vertex in common and do not belong to the same face. We call an edge ribbon any ordered sequence of 
pairwise opposite edges and a section polyline a polyline formed by a sequence of pairwise adjacent edges. Moreover, we 
call a section curve any curve interpolating the vertices of a section polyline. For simplicity, the discussion will be limited to 
meshes without boundary and therefore we can assume that all section polylines and curves are closed.

In the Introduction, we have drawn the reader’s attention the well-known fact that a tensor-product surface may easily 
yield poor-quality interpolants. This is because all isocurves of such a surface must have the same parametrization. As 
recalled, the latter requirement may result in an unnatural wiggling of the section curves that is very likely to happen when 
the data points are unevenly spaced and is even more evident when local interpolation methods are used.

In contrast to the tensor product technique, we wish to construct a surface where the vertices of each section polyline 
are interpolated at the parameter values that allow for the best quality of the resulting section curve.

To this aim, for every section polyline, we derive a non-uniform parameter sequence by exploiting an appropriate data-
dependent technique of parametrization. Then we assign to the section polyline edges the resulting parameter intervals. For 
instance, labeled by pi, j the mesh points, the centripetal parametrization applied to every section polyline will produce the 
edge parameter intervals

di, j := ∥∥pi+1, j − pi, j

∥∥α

2 and ei, j := ∥∥pi, j+1 − pi, j

∥∥α

2 , α = 1

2
. (6)

This can easily be seen comparing the above expressions and formulae (2)–(5).
We call the resulting configuration of parameters an augmented parametrization. The augmented parametrization is fea-

tured by the fact that the parameter intervals allocated to the edges of one mesh face will not form, in general, a rectangle. 
Conversely, in a tensor product surface, the parameter intervals must be equal for all edges belonging in the same edge 
ribbon, or, equivalently, the intervals allocated to the edges of every mesh face must form a rectangle.

We now aim to construct a composite surface, which we call an augmented surface, where every section curve is a local, 
univariate, spline of class D g Ck Pm S w and has an independent parametrization determined by the edge parameter intervals 
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Fig. 3. Labeling of vertices and parameter intervals for the construction of the augmented surface patch S having the expression (10).

of the corresponding section polyline. This means that the section curve piece bounded by pi, j and pi+1, j should have an 
associated parametric interval of length equal to di, j . Analogously, the parametric interval between any two vertices, p i, j
and pi, j+1 of the corresponding section curve should have length ei, j . In this way, each section polyline of the mesh can be 
interpolated at the parameter values that allow the best quality of the resulting section curve. As a consequence, the surface 
passing through these curves will most likely be aesthetically well-behaved.

It is sufficient to illustrate the construction for a generic surface patch interpolating the points ps,t , ps+1,t , ps,t+1,

ps+1,t+1 and in particular, without loss of generality, we can consider the one which interpolates p0,0, p1,0, p0,1, p1,1, 
depicted in Fig. 3. (As of now, the neighboring patch S̃ in Fig. 3 shall be overlooked. It will be used later in the proof of 
Proposition 2.) Any other patch can be analogously derived by proper index shift.

Let [0, 1]2 be the parametric domain associated with the considered patch. The first stage of the construction is to choose 
a class of local, univariate, spline interpolants D g Ck Pm S w , based on the properties that we seek in the final surface. Hence, 
in view of the Ck continuity of the fundamental functions, we consider the polynomials δi, j(v) i = − w

2 + 1, . . . , w
2 − 1, j = 0

and εi, j(u) i = 0, j = − w
2 + 1, . . . , w

2 − 1, of degree 2k + 1, uniquely determined by the following conditions:

δi, j : [0,1] → [di, j,di, j+1],
δi, j(0) = di, j, and δi, j(1) = di, j+1,

δ
(r)
i, j (0) = δ

(r)
i, j (1) = 0, r = 1, . . . ,k,

(7a)

and

εi, j : [0,1] → [ei, j, ei+1, j],
εi, j(0) = ei, j, and εi, j(1) = ei+1, j,

ε
(r)
i, j (0) = ε

(r)
i, j (1) = 0, r = 1, . . . ,k.

(7b)

We call the above polynomials δi, j and εi, j the local parametrization functions. Since δi, j(v) and εi, j(u) have vanishing 
derivatives up to order k at 0 and 1, they are monotonic functions with positive first derivative. Moreover they interpolate 
the two parameter intervals corresponding to opposite edges of a mesh face and therefore have the effect of “blending” the 
parametrizations. As it will become clear later on, this property is fundamental in guaranteeing that the section polylines of 
the surface be interpolated at the initially assigned parameter intervals.

We use the local parametrization functions to associate two local parameter vectors d and e with any (u, v) ∈ [0, 1]2. In 
particular, let us set:

d = d(v) =
(
δ− w

2 +1,0(v), . . . , δ0,0(v), . . . δ w
2 −1,0(v)

)
, (8a)

and

e = e(u) =
(
ε0,− w

2 +1(u), . . . , ε0,0(u), . . . , ε0, w
2 −1(u)

)
. (8b)

In this way, at the patch boundary described by (u, 0), u ∈ [0, 1], d = (
d−w/2+1,0, . . . ,d0,0, . . . ,dw/2−1,0

)
is the local parame-

ter vector relative to p0,0 p1,0 (see its definition in (3)). In addition, at the opposite boundary (u, 1), d is the local parameter 
vector relative to p0,1 p1,1. Analogously, for any point (0, v) or (1, v), v ∈ [0, 1], e is the local parameter vector associated 
respectively with p0,0 p0,1 or p1,0 p1,1.

We also consider the two local variables

x = u δ0,0(v), and y= v ε0,0(u), (9)

such that x and y span the intervals [0, δ0,0(v)] and [0, ε0,0(u)] while respectively u and v vary in [0, 1].
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Fig. 4. Construction of an augmented patch in the case of support width w = 4.

Finally, for any (u, v) ∈ [0, 1]2, we define the augmented surface patch S by

S(u, v) =
w
2∑

i=− w
2 +1

w
2∑

j=− w
2 +1

pi, j�i, j

(
x, y,d, e

)
, (10)

where

�i, j

(
x, y,d, e

)
= ψi

(
x,d

)
ψ j

(
y, e

)
, (11)

with local parameter vectors d, e given by (8a)–(8b) and x, y computed through (9).
Note that S depends on a grid of mesh vertices of size equal to w × w , where w is the support width of the underlying 

functions ψi and ψ j . For brevity, we will sometimes say that the patch has support w .

Remark 1. For simplicity of presentation we have assumed that the functions ψi(x, d) and ψ j(y, e) in (11) belong to the 
same family D g Ck Pm S w . However, the construction can easily be adapted to allow fundamental functions of two different 
classes D g Ck Pm S w .

We remark that the augmented patch S is not a tensor product surface. More precisely, we can interpret the above 
construction as follows. For a given (ū, ̄v) ∈ [0, 1]2, let d̄ and ē be the vectors

d̄ = d(v̄), ē = e(ū),

computed through (8a)–(8b), and let d̄ = δ0,0(v̄) and ē = ε0,0(ū). Then the value of S at (ū, ̄v) is obtained by evaluating the 
tensor product patch

T (ū,v̄)(x, y) =
w
2∑

i=− w
2 +1

w
2∑

j=− w
2 +1

pi, jψi

(
x, d̄

)
ψ j

(
y, ē

)
, (x, y) ∈ [0, d̄] × [0, ē],

at the point (x̄, ȳ), namely by setting S(ū, ̄v) = T (ū,v̄)(x̄, ȳ). In this view, a different tensor-product patch T (ū,v̄) determines 
the value of S at each domain point (ū, ̄v) ∈ [0, 1]2.

The construction of the augmented surface patch S is schematized in Fig. 4 for a class of fundamental functions having 
support width w = 4 and, more generally, can be summarized as follows. Each mesh face gives rise to a surface patch, 
parameterized over the domain [0, 1]2. For a given (ū, ̄v) ∈ [0, 1]2 we locally interpolate the parameter intervals, separately 
in the u and v direction, in order to generate two local parameter vectors d̄ = d(v̄) and ē = e(ū). We also map (ū, ̄v) into 
a couple of values (x̄, ȳ). This mapping is such that, at the boundaries (u, 0) and (u, 1), u ∈ [0, 1], x spans respectively the 
entire intervals [0, d0,0] and [0, d0,1]. Analogously, at the boundaries (0, v) and (1, v), v ∈ [0, 1], y spans respectively the 
intervals [0, e0,0] and [0, e1,0]. These are precisely the parameter intervals allocated to the edges of the given mesh face. 
Finally, we consider the surface T (ū,v̄)(x, y) defined as tensor product of the local univariate fundamental functions of class 
D g Ck Pm S w on d̄ and ē and we set S(ū, ̄v) = T (ū,v̄)(x̄, ȳ).

The remainder of this section is devoted to showing that the resulting composite surface has all the sought properties. 
We start by proving that the surface section curves form a network of univariate spline interpolants of class D g Ck Pm S w , 
where each curve has an independent non-uniform parametrization determined by the edge parameter intervals of the 
corresponding section polyline. In other words, if a network of section curves of class D g Ck Pm S w was independently deter-
mined before constructing the surface, then the surface would precisely be a transfinite interpolant of these curves.

Proposition 1. The section curves of an augmented surface based on a class of fundamental functions D gCk Pm S w are local univariate 
splines in the same class.
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Proof. It suffices to show that the section curve segment bounded by p0,1 and p1,1 (see Fig. 3) belongs to the unique local, 
non-uniform spline curve F of class D g Ck Pm S w interpolating the section polyline with vertices . . . , p−1,1, p0,1, p1,1, p2,1 . . .

and parameter intervals . . . , d−1,1, d0,1, d1,1, d2,1 . . . . Hence the statement can immediately be extended to the entire net-
work of section curves.

According to the local representation (4), we have

F (x) =
w
2∑

i=− w
2 +1

pi,1 ψi(x, d̄), x ∈ [0,d0,1], (12)

with local parameter vector

d̄ =
(

d− w
2 +1,1, . . . ,d0,1, . . . ,d w

2 −1,1

)
.

The patch boundary with endpoints p0,1 and p1,1 is described by (10) for u ∈ [0, 1], v = 1. At any such point (u, v), the 
fundamental functions ψ j of the class D g Ck Pm S w , j = −w/2 + 1, . . . , w/2 − 1, have the values ψ1(y, e) = 1 and ψ j(y, e) =
0, for any j �= 1, and, by (9), x = ud0,1. Substituting in (10) we get

S(u,1) =
w
2∑

i=− w
2 +1

pi,1ψi(x,d).

Hence, the statement follows by observing that the local parameter vectors d and d̄ are equal and thus the curve segments 
determined by the above formula and by (12) are identical. �

We shall now study the continuity of an augmented composite surface. Preliminarily, we observe that each surface patch 
is defined as a composition of infinitely differentiable functions (note that the edge parameter intervals are assumed to be 
nonzero). Moreover, Proposition 1 guarantees the continuity of the constructed surface and entails that two neighboring 
augmented patches have Ck continuous derivatives in the direction of their common boundary. The following proposition 
shows that the same smoothness holds in the cross-boundary direction and in particular allows us to conclude that the 
constructed surface is globally Gk continuous.1 For ease of notation, we formulate the statement for the two patches S and 
S̃ represented in Fig. 3. It is immediate to see that the result holds when considering any two neighboring patches and 
their common boundary, provided appropriate adjustment of indices.

Proposition 2. Let S and S̃ be the two adjacent augmented surface patches depicted in Fig. 3, based on fundamental functions of class 
D g Ck Pm S w . Then the derivatives across their common boundary satisfy the relation

∂r

∂ur
S(u, v)|(0,v) = �r(v)

∂r

∂ur
S̃(u, v)|(1,v), r = 0, . . . ,k, (13)

where

�(v) = δ0,0(v)

δ−1,0(v)
, (14)

and δ0,0 and δ−1,0 are the local parametrization functions defined in (7a).

The above result can be shown by direct verification, and we postpone the proof to the end of this section. For the 
moment, it is important to observe that relation (14) provides the scaling �(v) relating the cross-boundary derivatives of S
and S̃ . In general, �(v) is different at each boundary point, but varies smoothly along the boundary, being defined as the 
ratio of two positive polynomials. As a consequence of Proposition 2 we obtain the following result.

Proposition 3. Two augmented surface patches built upon a class of fundamental functions D gCk Pm S w join along their common 
boundary with Gk-continuity.

Proof. Without loss of generality, we can take the two patches S and S̃ in Proposition 2 and consider the map

ρ(u, v) =
(

�(v)u + 1
v

)
,

1 Gk continuity refers to agreement of derivatives after suitable reparametrization (Perters, 2002).
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where �(v) is given by (14). The function ρ is a Ck reparametrization between the two domains of S and S̃ . Moreover, 
exploiting relation (13), it is immediate to verify that

∂r

∂ur
S(u, v)|(0,v) = ∂r

∂ur

(
S̃ ◦ ρ

)
(u, v)|(0,v), r = 0, . . . ,k.

The above observations entail that the two considered patches join along their common boundary with Gk -continuity. �
The remainder of this section is devoted to proving Proposition 2. As a premise, the following Lemma is stated as an 

independent result, since it will be later recalled in Section 4.

Lemma 1. Let S be an augmented surface patch of the form (10). Then its cross-boundary derivatives satisfy the following relations

∂r

∂ur
S(u, v)|(ū,v) = ∂r

∂xr
S
(

x, y,d, e
)
|(ū,v)δ

r
0,0(v), ū = 0,1,

∂r

∂vr
S(u, v)|(u,v̄) = ∂r

∂ yr
S
(

x, y,d, e
)
|(u,v̄)ε

r
0,0(u), v̄ = 0,1,

(15)

where δ0,0 and ε0,0 are the local parametrization functions defined in (7a)–(7b).

Proof. The result immediately follows by using the chain rule, relation (9) and the fact that δ(r)
i,0(v) = ε

(r)
0, j(u) = 0, r =

1, . . . , k, u, v = 0, 1 and i, j = − w
2 + 1, . . . , w

2 − 1. �
The above result relies on the fact that the local parametrization functions (7a)–(7b) have vanishing derivatives at the 

endpoints of their interval of definition. As we will see shortly, this property also plays a prominent role in proving Propo-
sition 2. An interesting consequence is that, in order to prescribe a correct set of local parametrization functions, it is 
not sufficient to require that these functions interpolate the edge parameter intervals values. Indeed, the aforementioned 
condition on the derivatives is essential to guarantee that the composite surface be Gk continuous.

Proof of Proposition 2. Without loss of generality, we can assume that the local reference system uv of the two patches is 
oriented as illustrated in Fig. 3. Therefore, the common boundary of S and S̃ corresponds to (0, v) for S and (1, v) for S̃ . 
We refer to the same figure for the labeling of all the relevant quantities involved. To prove the statement, we shall verify 
that (13)–(14) hold for any arbitrary v ∈ [0, 1].

By differentiating formulae (10)–(11) in the cross-boundary direction u, we obtain

∂r

∂ur
S(u, v) =

w
2∑

i=− w
2 +1

w
2∑

j=− w
2 +1

pi, j

r∑
q=0

(
r

q

)
∂q

∂uq
ψi

(
uδ0,0(v),d(v)

) ∂r−q

∂ur−q
ψ j

(
vε0,0(u), e(u)

)
, (16)

where

d(v) =
(
δ− w

2 +1,0(v), . . . , δ0,0(u), . . . , δ w
2 −1,0(v)

)
and e(u) =

(
ε0,− w

2 +1(u), . . . , ε0,0(u), . . . , ε0, w
2 −1(u)

)
.

(17)

From the definition of the local parametrization functions in (7a)–(7b), we have ε′
h,0(0) = 0, h = − w

2 + 1, . . . , w
2 − 1 and 

therefore

∂

∂u
ψ j

(
vε0,0(u), e(u)

)∣∣∣∣
(0,v)

=
w
2 −1∑

h=− w
2 +1

∂ψ j

∂εh,0

∂εh,0

∂u

∣∣∣∣∣∣
(0,v)

= 0.

Moreover, since ε(r)
h,0(u) vanishes at u = 0, for all r = 1, . . . , k, by iterating the differentiation process (cf. Faà di Bruno’s law) 

it can be easily verified that

∂r−q

∂ur−q
ψ j

(
vε0,0(u), e(u)

)∣∣∣∣
(0,v)

= 0, q = 0, . . . , r − 1, r = 1, . . . ,k.

In addition, recalling that the fundamental functions D g Ck Pm S w have continuity Ck and support width w , there holds

∂r

∂ur
ψ w

2

(
uδ0,0(v),d(v)

)∣∣∣∣ = 0, r = 1, . . . ,k.

(0,v)
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Fig. 5. A class of fundamental functions with w = 4. (a) Local parameter vectors at the boundary point (0, ̄v) and (1, ̄v) respectively for the patches S and 
S̃ involved in the proof of Proposition 2; (b) Fundamental functions defined on the corresponding parameter intervals in the cross-boundary direction.

Using the last two above identities, at any boundary point equation (16) reduces to

∂r

∂ur
S(u, v)

∣∣∣∣
(0,v)

=
w
2 −1∑

i=− w
2 +1

w
2∑

j=− w
2 +1

pi, j ψ j

(
ve0,0, e(0)

) ∂r

∂ur
ψi

(
uδ0,0(v),d(v)

)∣∣∣∣
(0,v)

. (19)

We now turn to considering the neighboring surface patch S̃ . Denoted d̃(v) and ẽ(u) the local parameter vectors for S̃ , 
we have

d̃(v) =
(
δ− w

2 ,0(v), . . . , δ−1,0(u), . . . , δ w
2 −2,0(v)

)
, ẽ(u) =

(
ε−1,− w

2 +1(u), . . . , ε−1,0(u), . . . , ε−1, w
2 −1(u)

)
,

(20)

and thus

∂r

∂ur
S̃(u, v) =

w
2 −1∑

i=− w
2

w
2∑

j=− w
2 +1

pi, j

r∑
q=0

(
r

q

)
∂q

∂uq
ψi

(
uδ−1,0(v), d̃(v)

) ∂r−q

∂ur−q
ψ j

(
vε−1,0(u), ẽ(u)

)
.

As before, it can easily be verified that

∂r−q

∂ur−q
ψ j

(
vε−1,0(u), ẽ(u)

)∣∣∣∣
(1,v)

= 0, q = 0, . . . , r − 1, r = 1, . . . ,k.

Moreover, from the compact support of the fundamental functions follows that

∂r

∂ur
ψ− w

2

(
uδ−1,0(v), d̃(v)

)∣∣∣∣
(1,v)

= 0, r = 1, . . . ,k,

and, observing that e(0) = ẽ(1), we obtain

∂r

∂ur
S̃(u, v)

∣∣∣∣
(1,v)

=
w
2 −1∑

i=− w
2 +1

w
2∑

j=− w
2 +1

pi, j ψ j

(
ve0,0, e(0)

) ∂r

∂ur
ψi

(
uδ−1,0(v), d̃(v)

)∣∣∣∣
(1,v)

. (21)

Now, in view of (19) and (21), it only remains to show that the derivatives of order r = 1, . . . , k of the functions ψi agree 
after the scaling �(v) in (14).

Comparing the expressions in (17) and (20) we can see that the two vectors d(v) and d̃(v) are one a “shifted” version 
of the other and therefore “overlap” almost everywhere, with the exception of the first element in d̃ and the last one in d
(Fig. 5(a) schematizes the situation for a class of fundamental functions having support width w = 4). These two different 
intervals are uninfluential to the value and derivatives of the fundamental functions at a boundary point (see Fig. 5(b)). As 
a consequence, at such a point, the fundamental functions defined on d(v) and d̃(v) agree together with their derivatives 
up to order k, namely

∂r

∂xr
ψi(x,d(v))

∣∣∣∣
x=0

= ∂r

∂xr
ψi(x, d̃(v))

∣∣∣∣
x=δ−1,0(v)

, i = − w

2
− 1, . . . ,

w

2
+ 1, r = 0, . . . ,k.

The last relation and (15) entail that

∂r

∂ur
S(u, v)

∣∣∣∣
(0,v)

=
(

δ0,0(v)

δ−1,0(v)

)r
∂r

∂ur
S̃(u, v)

∣∣∣∣
(1,v)

,

which concludes the proof. �
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Fig. 6. Comparison between tensor product and augmented surfaces built upon univariate splines of class D5C2 P 2 S4. Fig. 6(e) shows the interpolatory 
curves of the considered class generated from the red-colored section polyline in 6(a) with augmented and tensor product parameterizations. (For interpre-
tation of the references to color in this figure, the reader is referred to the web version of this article.)

3.1. Examples

This section presents some examples of augmented surfaces, which will allow us to highlight several important features 
of the proposed method. In particular:

• Augmented surfaces show significantly better quality with respect to tensor product ones. In fact, when the data points 
are unevenly distributed, tensor product surfaces show unwanted interpolation artifacts. According to our experiments, 
these artifacts are not present in their augmented counterpart.

• For each class D g Ck Pm S w of local, univariate, non-uniform splines in Beccari et al. (2013a), Antonelli et al. (2014), we 
get an augmented surface with the same smoothness and support width, and where the section curves are univariate 
splines in the given class. This yields a large family of surfaces with different properties. Thanks to the augmented 
parametrization, each of these surfaces is aesthetically pleasing and faithfully resembles the input mesh.

• Even in the case where a tensor product surface has no artifacts, its augmented counterpart better approximates the 
shape of the input mesh.

In the following we discuss the above points in more detail, also with the help of graphical illustrations.
As a premise, we shall recall that the method for computation of the edge parameter intervals greatly impacts the surface 

shape and its quality. Therefore, to allow a fair comparison, all our examples are based on the same technique. Comparing 
different approaches of curve parametrization is not the scope of this paper. The reader may refer to Fang and Hung (2013)
for a recent study on the topic.

For the augmented surfaces, the edge parameter intervals are computed through the centripetal parametrization as illus-
trated in the previous section. Moreover, tensor product surfaces are parameterized by averaging the centripetal parameter 
interval values, in such a way that every isocurve can have the same (non-uniform) parameter sequence. Note that, in 
this case, a different parameter sequence is created for each domain direction. For brevity, we call this approach a mean 
parametrization.

Fig. 6 shows two surfaces obtained by interpolating a “modified” torus mesh with augmented and mean parameteriza-
tion. Due to the uneven length of mesh edges, finding a good quality interpolating surface is a challenging task. In fact, the 
tensor product surface shows noticeable ripples both in the shaded display and in the mean curvature graph. In contrast, 
these artifacts are not encountered in the augmented surface, which is aesthetically pleasing and exhibits a better curvature 
graph.

A closer examination of one section polyline (in red in Fig. 6(a)) will help us in understanding the different behavior of 
the two surfaces. Fig. 6(e) depicts the section curves obtained when the parameter intervals are generated by the augmented 
and mean parametrizations. The averaging step required by the mean parametrization entails that the parameter intervals 
assigned to the edges of the considered polyline are very different than the initial centripetal parametrization and have 
little relationship with the geometry of the interpolation data. This is responsible for the undesired ripple. Oppositely, in the 
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Fig. 7. Comparison between augmented and tensor product surface. (a) Input mesh; (b) The section polyline highlighted in (a) and section curves of class 
D5C2 P 2 S4, with the augmented (centripetal) and mean parametrizations. (c)–(d) Corresponding augmented and tensor product surfaces. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 8. Local interpolatory surfaces with augmented parametrization built upon different classes of univariate splines D g Ck Pm S w (g , k, m and w are the 
degree, order of continuity, maximum degree of polynomials that are reproduced and support width). 1st row: Input mesh depicted from two different 
points of view; 2nd row: Surfaces and curvature combs of section curves superimposed; 3rd row: Mean curvature.

augmented surface, the section polyline vertices are interpolated at centripetal parameters and the resulting section curve 
is free of shape artifacts.

Fig. 12 (for now restricted to cases 12(a) and 12(b)) is another example where the mean parametrization fails compared 
to the augmented one. The tensor product surface with mean parametrization self intersects, whereas no artifact is present 
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Fig. 9. Mesh containing several extraordinary vertices. The regular regions are highlighted in grey for support width w = 4 and w = 6.

in the augmented surface. We shall use this example also to recall that local interpolation easily allows for managing open 
surfaces. In the considered case, an additional layer of mesh faces is generated by linear extrapolation across the boundary. 
With these additional data, the boundary patches can straightforwardly be computed by formula (10).

The example in Fig. 7 emphasizes that an augmented surface may be preferable compared to a tensor product surface, 
even when the latter does not present unwanted artifacts. The red-colored section polyline in Fig. 7(a) is a regular square. 
The symmetry in the data is reflected in the corresponding section curve of the augmented surface (Fig. 7(b)). Conversely, 
this is not the case with the tensor product surface, as a side effect of the underlying mean parametrization. Therefore, 
even if both surfaces are G2 continuous and free of interpolation artifacts, the augmented one more faithfully resembles the 
input data.

Fig. 8 shows local interpolatory surfaces with augmented parametrization based upon various classes D g Ck Pm S w . Re-
gardless of the different properties of the underlying fundamental functions, all the displayed surfaces are aesthetically 
pleasing and closely resemble the shape of the input mesh. The difference between one surface and another is made appar-
ent by the curvature comb of the section curves and by the mean curvature graph. In view of Proposition 3, the displayed 
surfaces are Gk continuous with k = 1, 2, 3, according to the continuity of the class D g Ck Pm S w .

4. Local interpolation of meshes with extraordinary vertices by augmented surface patches

In this section we discuss how to generate local interpolatory surfaces of high quality when the input mesh contains 
extraordinary vertices. To this aim, we shall partition the mesh into regular and extraordinary regions. Regular regions com-
prise all the mesh faces where the local method described in Section 3 applies, whereas the remaining faces will form 
extraordinary regions. The generation of an augmented surface patch of the form (10) requires that we can uniquely deter-
mine a surrounding rectangular grid of mesh vertices, whose size depends on the support of the patch. In particular, we 
need a w × w vertex grid, when the underlying fundamental functions belong to class D g Ck Pm S w . We say that a patch 
is regular when it can be generated by formula (10), whereas it is extraordinary otherwise. Fig. 9 illustrates the regular 
and extraordinary regions of a sample mesh for w = 4, 6. As shown in the figure, we do not require that extraordinary 
vertices be separated by (a sufficient number of) regular ones. As a consequence, if the support width is greater than 4, an 
extraordinary patch may not contain an extraordinary vertex.

After constructing regular augmented patches wherever possible, we obtain a surface with “holes” surrounding the ex-
traordinary vertices. For example, in the case of support width 4 or 6, around each isolated extraordinary vertex we will 
have a hole corresponding to one ring or two rings of mesh faces respectively. Moreover, the boundaries of the augmented 
regular patches will form a network of open curves of class D g Ck Pm S w . Therefore, the problem to be addressed is how 
to patch the extraordinary regions of the mesh with sufficient smoothness and how to properly manage the join between 
regular and extraordinary patches, taking into account the underlying augmented parametrization.

Our construction for the extraordinary patches is based on the well-known Coons–Gregory scheme, which we will tweak 
in order to conform to the augmented parametrization. To explain the basic idea, we start by considering the G1 Coons–
Gregory patches (Gregory, 1974) (see also the classical text books (Hoschek and Lasser, 1993; Farin, 2002)), which can be 
more familiar to the majority of readers. Successively, we also address the G2 form of these patches, initially proposed in 
Miura and Wang (1991) and later developed in Hermann (1996). As a result, depending on the method used, an extraordi-
nary patch will join with G1 or G2 continuity the neighboring patches, that can be either regular or extraordinary. At the 
same time, as we have seen in the previous section, the regular portion of the surface will have arbitrary smoothness Gk

away from the boundary between the regular and extraordinary regions.
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Fig. 10. Schematic representation of the quantities needed for the definition of an augmented Coons–Gregory patch (the second-order cross-derivative fields 
ξ i are needed for the biquintically blended patch only).

We remark that the entire method is not intended for meshes that are mainly composed of extraordinary vertices 
(although applicable also in this case). In fact, the regular portion of the composite surface should serves as a “guide” for 
the generation of the extraordinary patches.

The input data for a Coons–Gregory patch are 4 boundary curves and the related cross-boundary derivative fields (in 
short cross-derivatives) of the first and, possibly, second order. Each of the 4 boundaries may join either an extraordinary 
patch or a regular one. In the former situation, the boundary curve and cross-derivatives need to be prescribed in an 
appropriate way and how to do so is an independent issue. Therefore, from now we assume that this information is given. 
We will return on the problem of determining the missing boundary information in Section 4.3, where we discuss how 
these data have been generated in our prototype system.

When the boundary joins a regular patch of the form (10), the input data are sampled from such a patch and we need to 
take into account that the cross-derivatives vary according to the augmented parametrization. More precisely, the transversal 
derivatives of an augmented patch depend on the local parametrization functions and, according to Lemma 2, the mapping 
from the uv domain to the local variables x, y is different at each boundary point. The two following subsections are 
devoted to illustrating how a Coons–Gregory patch needs to be defined in order to correctly interpolate the data sampled 
from an augmented regular patch.

Before delving into details, we introduce the setting and notation. As in Section 3, we assume that a parameter interval 
value is assigned to every mesh edge, both in the regular regions and in the extraordinary ones. This is reasonable, since 
an automatic parametrization method generally yields a parameter interval in both cases. For instance, if we wish to use 
the centripetal parametrization, formula (6) applies regardless of whether an edge belongs in a regular region or not. 
Consequently, the parameter intervals associated with the edges of an extraordinary face may not form a rectangle. This 
yields an augmented parametrization for the extraordinary patches as well. We denote an augmented extraordinary patch 
by S∗ , to distinguish it from the regular patches so far denoted by S .

Fig. 10 illustrates the labeling of the relevant quantities needed to construct an augmented Coons–Gregory patch. We 
adopt a simplified notation with respect to the preceding part of the paper. The face vertices to be interpolated are now 
denoted by pi , i = 1, . . . , 4 and sometimes we shall call these points the corners. The boundary curves are denoted by γ i , 
i = 1, . . . , 4 and χ i, ξ i represent the respective first and second order cross-derivative fields. Moreover, d0, d1, e0 e1 are the 
edge parameter intervals.

With an extraordinary patch, we associate the parametric domain [0, 1]2 and two local parametrization functions δ(v)

and ε(u), u, v ∈ [0, 1], following the same definition in Section 3. More precisely, with the current notation, formulae 
(7a)–(7b) read as follows: δ(v) is the polynomial δ : [0, 1] → [d0, d1] of degree 2k + 1 such that δ(0) = d0, δ(1) = d1 and 
δ(r)(0) = δ(r)(1) = 0, r = 1, . . . , k. Analogously, ε(u) is the polynomial ε : [0, 1] → [e0, e1] of degree 2k +1 such that ε(0) = e0, 
ε(1) = e1 and ε(r)(0) = ε(r)(1) = 0, r = 1, . . . , k.

We describe the boundary curves in terms of the local variables

x0 = ud0, x1 = ud1, y0 = ve0, y1 = ve1, (22)

in such a way that each boundary segment γ i , is parameterized on the corresponding edge parameter interval. This means 
that γ 0(x0) = p0 when x0 = 0 and γ 0(x0) = p1 when x0 = d0, with similar interpolation conditions for the other three 
curves γ 1(y1), γ 2(x1), γ 3(y0).

4.1. Augmented bicubically blended Coons patches with Gregory correction

For the construction of a G1 Coons–Gregory patch, we shall use the cubic Hermite basis on [0, 1], arranged in the vector

H(u) =
(
−1,2u3 − 3u2 + 1,−2u3 + 3u2, u3 − 2u2 + u, u3 − u2

)T
.

We define the augmented Coons–Gregory patch S∗ as

S∗(u, v) = −H(u)T M3(u, v)H(v),
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where

M3(u, v) =

⎛
⎜⎜⎜⎝

0 γ 0(x0) γ 2(x1) ε(u)χ0(x0) ε(u)χ2(x1)

γ 3(y0) p0 p3 e0 γ ′
3(0) e0 γ ′

3(e0)

γ 1(y1) p1 p2 e1 γ ′
1(0) e1 γ ′

1(e1)

δ(v)χ3(y0) d0 γ ′
0(0) d1 γ ′

2(0)
	1,1δ(v)χ1(y1) d0 γ ′

0(d0) d1 γ ′
2(d1)

⎞
⎟⎟⎟⎠ , (23)

for any (u, v) ∈ [0, 1]2, being ε and δ the related local parametrization functions and x0, x1, y0, y1 determined by (22).
The choice of expressing the cross-derivative fields in terms of the local variables xi and yi , i = 0, 1, facilitates the 

construction of the augmented Coons–Gregory patch in the case where the boundary information is not available from an 
adjacent regular patch, and thus needs to be heuristically estimated, as, in this case, it is more natural to specify the missing 
fields in the local variables.

As a consequence of the augmented parametrization, a suitable scaling factor is associated with the entries of the patch 
matrix M3 to guarantee that the correct derivatives are interpolated both in the boundary and cross-boundary direction. 
More precisely, the derivatives of the boundary curves, γ ′

i , i = 1, . . . , 4, are mapped to the uv domain multiplying their 
value by the length of the related parameter interval di or ei , i = 0, 1. In addition, in view of Proposition 1, the scaling 
factor needed to express the first derivatives χ 0(x0), χ1(y1), χ2(x1), χ3(y0) in the uv domain corresponds to the value 
of the appropriate local parametrization function at the evaluation point (u, v). Therefore, whereas the scaling factor is 
constant for the derivatives of the boundary curves, for the cross-derivatives it changes at each (u, v). Finally, we shall also 
take into account that, when χ i is sampled from a regular augmented patch S , then its value needs to be divided by the 
appropriate local parametrization function before being inserted in (23).

To complete the definition of the matrix (23), we need to provide the twist vectors matrix 	1,1, possibly with Gregory 
correction for twist incompatibility. This is given by

	1,1 :=
⎛
⎝ d0e0

uχ ′
3(0)+vχ ′

0(0)

u+v d1e0
uχ ′

3(e0)+(1−v)χ ′
2(0)

u+(1−v)

d0e1
(1−u)χ ′

1(0)+vχ ′
0(d0)

(1−u)+v d1e1
(1−u)χ ′

1(e1)+(1−v)χ ′
2(d1)

(1−u)+(1−v)

⎞
⎠ ,

where the scaling factors of type die j , i, j = 0, 1 preceding the rational terms are determined by the same argument used 
above. It can be shown through direct verification that the patch S∗ interpolates the corner points, the boundary curves and 
the cross-boundary first derivatives. Therefore the resulting composite surface is G1 continuous at the boundaries between 
regular and extraordinary regions and in the interior of the latter. This type of continuity is sufficient when the regular 
regions are constructed from C1 fundamental functions, like in the case of Catmull–Rom splines. Otherwise, it may be 
desirable to use a patching scheme with higher continuity as discussed in the next subsection.

4.2. Augmented biquintically blended Coons patches with Gregory correction

In order to construct a G2 Coons–Gregory patch we exploit the quintic Hermite basis, arranged in the vector

H(u) =
(
−1,−6u5 + 15u4 − 10u3 + 1,6u5 − 15u4 + 10u3,−3u5 + 8u4 − 6u3 + u,

−3u5 + 7u4 − 4u3,−1

2
u5 + 3

2
u4 − 3

2
u3 + 1

2
u2,

1

2
u5 − u4 + 1

2
u3

)T

,

and we compute the value of the augmented patch S∗ according to

S∗(u, v) = −H(u)T M5(u, v)H(v).

The patch matrix is now

M5(u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M3(u, v)

ε2(u) ξ0(x0) ε2(u) ξ2(x1)

e2
0 γ ′′

3(0) e2
0 γ ′′

3(e0)

e2
1 γ ′′

1(0) e2
1 γ ′′

1(e1)

	1,2

δ2(v) ξ3(y0) d2
0 γ ′′

0(0) d2
1 γ ′′

2(0)
	2,1 	2,2

δ2(v) ξ1(y1) d2
0 γ ′′

0(d0) d2
1 γ ′′

2(d1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where M3 is given by (23) and ξ0(x0), ξ1(y1), ξ2(x1), ξ3(y0) are the cross-boundary second derivatives. The mixed deriva-
tives matrices, possibly with Gregory correction for twist incompatibility, are defined as follows:
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	1,1 =
⎛
⎝ d0e0

u2χ ′
3(0)+v2χ ′

0(0)

u2+v2 d1e0
u2χ ′

3(e0)+(1−v)2χ ′
2(0)

u2+(1−v)2

d0e1
(1−u)2χ ′

1(0)+v2χ ′
0(d0)

(1−u)2+v2 d1e1
(1−u)2χ ′

1(e1)+(1−v)2χ ′
2(d1)

(1−u)2+(1−v)2

⎞
⎠ ,

	1,2 =
⎛
⎝ d0e2

0
u2χ ′′

3(0)+v2ξ ′
0(0)

u2+v2 d1e2
0

u2χ ′′
3(e0)+(1−v)2ξ ′

2(0)

u2+(1−v)2

d0e2
1

(1−u)2χ ′′
1(0)+v2ξ ′

0(d0)

(1−u)2+v2 d1e2
1

(1−u)2χ ′′
1(e1)+(1−v)2ξ ′

2(d1)

(1−u)2+(1−v)2

⎞
⎠ ,

	2,1 =
⎛
⎝ d2

0e0
u2ξ ′

3(0)+v2χ ′′
0(0)

u2+v2 d2
1e0

u2ξ ′
3(e0)+(1−v)2χ ′′

2(0)

u2+(1−v)2

d2
0e1

(1−u)2ξ ′
1(0)+v2χ ′′

0(d0)

(1−u)2+v2 d2
1e1

(1−u)2ξ ′
1(e1)+(1−v)2χ ′′

2(d1)

(1−u)2+(1−v)2

⎞
⎠ ,

	2,2 =
⎛
⎝ d2

0e2
0

u2ξ ′′
3(0)+v2ξ ′′

0(0)

u2+v2 d2
1e2

0
u2ξ ′′

3(e0)+(1−v)2ξ ′′
2(0)

u2+(1−v)2

d2
0e2

1
(1−u)2ξ ′′

1(0)+v2ξ ′′
0(d0)

(1−u)2+v2 d2
1e2

1
(1−u)2ξ ′′

1(e1)+(1−v)2ξ ′′
2(d1)

(1−u)2+(1−v)2

⎞
⎠ .

The interpretation of the construction and of the scaling factors that appear in M5 is conceptually similar to what we 
have seen in the preceding subsection and therefore no additional comment is needed. As before, the terms involving second 
order derivatives require appropriate scaling to map the local variables x, y to the uv domain and again the proper scaling 
factor can be determined from relation (15). It can be shown through direct verification that the patch S∗ interpolates 
the corner points, the boundary curves and the cross-boundary first and second derivatives. Therefore it guarantees that 
the resulting composite surface is G2 continuous at the boundaries between regular and extraordinary regions and in the 
interior of the latter.

4.3. Mesh regions with extraordinary vertices and G1/G2 compatibility conditions

The construction of a Coons–Gregory patch requires boundary curves and cross-derivative fields. When this informa-
tion cannot be sampled from an existing regular patch, then it shall be drawn from the mesh itself, which represents the 
only available data. In this section we will focus on how to specify the boundary curves. Being these computed, the cross-
derivative fields can be constructed by suitable interpolation of the boundary curves values and derivatives at the corners 
according to standard procedures (see Farin, 2002 and Hermann, 1996 for the G1 and G2 case respectively).

Methods to create fair curve networks from arbitrary meshes were suggested in Moreton and Séquin (1994), and, to the 
best of our knowledge, this is the only available reference on the subject. Our case is different, however, since much of 
the curve network is created using the local interpolating univariate splines D g Ck Pm S w and there only remains to define 
isolated segments of the network.

For meshes that contain extraordinary vertices, we extend the definition of a section polyline given is Section 3. A section 
polyline is now a sequence of adjacent edges characterized in one of the following ways: i) it is closed and all its vertices 
are regular or ii) it is open, the first and last points are extraordinary vertices and all the remaining vertices are regular. 
Accordingly, a section curve is one that interpolates the vertices of a section polyline. The section curves starting or ending 
at the extraordinary vertices can be thought off as open curves.

Wherever possible, we wish to construct the patch boundary segments in such a way that, globally, the related section 
curve belongs to class D g Ck Pm S w . Using this condition, if w > 4, some of the missing curve segments can directly be 
determined by locally interpolating the corresponding section polyline. For example, with reference to Fig. 9, only the 
red-colored edges cannot be computed in this way.

When they can not be otherwise determined, we construct the boundary segments by polynomial interpolation of end-
points and endpoint derivatives. The latter shall be sampled from existing curve segments when available, in such a way 
that the corresponding section curve has globally the correct continuity. Otherwise they need to be heuristically estimated. 
In doing so, we shall take into account that the derivatives at one vertex need to satisfy Gk , k = 1, 2 compatibility con-
ditions (depending on the continuity of the Coons–Gregory patch), meaning that locally the resulting network of section 
curves can be embedded into a Ck surface. In particular, G1 compatibility entails that all the curve tangents lie on the same 
plane, which is the tangent plane. Conditions for G2 compatibility are more complex and do not have a direct geometric 
interpretation (Hermann, 1996; Hermann et al., 2012).

Our approach for generating G1 and G2 compatible derivatives is based on least squares polynomial approximation. This 
idea is not new, as was already used, for example, to tweak the derivatives of Catmull–Clark subdivision surfaces in the 
neighborhood of extraordinary vertices (Antonelli et al., 2013). The outline of the procedure is as follows. First, a proper set 
of points in the vicinity of the extraordinary vertex is generated. These points should serve as a “guide” for the shape of 
the surface that we want to fit. Then a least squares polynomial approximating these points is computed and its derivatives 
are sampled along proper directions. To make the numerical examples reproducible, the details of our implementation are 
provided in Appendix B. The described method guarantees G2 compatibility and, in our tests, has always generated visually 
pleasing surfaces in the vicinity of the extraordinary vertices. One can reasonably expect that even better results can be 
produced by more elaborate techniques and further investigation is a possible topic for future research.
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Fig. 11. (a) A regular mesh and (b) a mesh with an extraordinary vertex of valence 5. (c)–(d) Corresponding mean parametrization in the neighborhood of 
the central vertex: each letter indicates a different edge parameter interval value.

Fig. 12. First line: surfaces from the class D5C2 P 2 S4 interpolating the meshes in Figs. 11(a) and 11(b) with augmented parametrization ((a) and (c)) and 
mean parametrization ((b) and (d)). Second line: corresponding mean curvature graph.

4.4. Examples

In this section we present some examples of augmented surfaces interpolating meshes with extraordinary vertices. The 
displayed surfaces are based upon the class of univariate splines D5C2 P 2 S4, which offers a good tradeoff between high con-
tinuity (the corresponding surfaces are G2 continuous) and small support width (and thus higher computational efficiency).

Following the same outline of the regular case examples discussed in Section 3.1, we start by comparing surfaces gener-
ated through the augmented and mean parameterizations. For meshes with extraordinary vertices, the mean parametrization 
can be generalized as suggested in Cashman et al. (2009). In particular, one parameter interval is assigned to every edge 
belonging in the same edge ribbon and it is defined as the average of all parameter intervals in the ribbon. This strategy 
results in the configuration illustrated in Fig. 11(d) and obviously generalizes the setting of parameters used in the regular 
case.

Fig. 12 emphasizes that, also for surfaces containing extraordinary vertices, the mean parametrization may give rise to 
noticeable artifacts, which can be overcome by the use of the augmented parametrization. The different result of the two 
parameterizations is readily apparent from the shaded display and is further emphasized by the curvature graph.

Fig. 13 presents more complex examples of G2-continuous surfaces of high quality with augmented parametrization. 
Figs. 13(b) and 13(f) show the regular patches and the constructed network of section curves. As discussed in the previ-
ous section, the section curves passing through the extraordinary vertices can be thought off as open curves. The curve 
segments emanating from the extraordinary vertices are determined as a degree 5 polynomials, interpolating endpoint val-
ues and derivatives up to second order. As a result, the entire section curves belong to class D5C2 P 2 S4. The augmented 
Coons–Gregory patches are illustrated in Figs. 13(c) and 13(g), whereas Figs. 13(d) and 13(h) show the entire composite 
surface. For the open surface depicted in Fig. 13, the boundary patches are regular augmented patches of the form (10). 
Their construction is performed by suitably extrapolating the mesh across the boundary in order to obtain an additional 
layer of faces and vertices.

Fig. 14 compares the results of the augmented and mean parameterizations for the meshes in Fig. 13 and emphasizes 
the better quality of the augmented surfaces. In particular, in the extraordinary region, the surface curvature produced by 
the mean parametrization wiggles several times between positive and negative values, while this does not happen when 
the augmented parametrization is used.
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Fig. 13. Surfaces from the class D5C2 P 2 S4 with augmented parametrization.

Fig. 14. Zoom of the surfaces obtained from the meshes in Fig. 13 with augmented and mean parametrization.

Finally, Fig. 15 comprises some challenging data sets and the corresponding augmented interpolatory surfaces, which 
are globally G2, free of unwanted artifacts and overall approximate in a reasonable way the shape of the input mesh. We 
consider this result highly nontrivial for a local interpolation method.

5. Conclusion

We have presented a local construction for interpolatory composite surfaces, which is based on the use of univariate 
spline interpolants having degree g , continuity Ck , polynomial reproduction degree m and support width w . Thanks to the 
augmented parametrization, each section curve is parameterized independently of the others and in the most appropriate 
way. Away from the extraordinary vertices the generated surfaces retain the same smoothness of the underlying class of 



JID:COMAID AID:1579 /FLA [m3G; v1.182; Prn:20/07/2016; 14:56] P.19 (1-22)

M. Antonelli et al. / Computer Aided Geometric Design ••• (••••) •••–••• 19
Fig. 15. Surfaces from the class D5C2 P 2 S4 with augmented parameterization.

univariate splines. Surface regions surrounding extraordinary vertices have been generated by means of a modified form of 
Coons–Gregory patches, joining with G1 or G2 continuity the regular portion of the surface. The obtained surfaces are aes-
thetically well-behaved, as we have demonstrated by several numerical examples concerning both regular and extraordinary 
meshes.

We postpone to a future work a more thorough investigation of other possible methods for patching extraordinary 
vertices. Using the augmented parametrization in different contexts is another topic worthy of consideration. For example, 
there is no problem (in principle) in applying the augmented parametrization with standard B-splines, and its extension to 
more general techniques of surface generation may also be of interest.
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Appendix A. Some classes of fundamental functions

The following fundamental spline functions are obtained following the approach reported in Beccari et al. (2013a).

A.1. Fundamental functions of the class D3C1 P 2 S4

Recalling our notation di = xi+1 − xi , in the interval [−di−2 − di−1, di + di+1] the expression of the fundamental function 
ψi is given by

ψi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(di−1 + x) (di−2 + di−1 + x)2

di−2di−1 (di−2 + di−1)
, −di−2 − di−1 ≤ x < −di−1,

(di−1 + x)
(
di

(−x2 + di−1di−2 + d2
i−1

) − x (di−2 + di−1) (di−1 + x)
)

d2
i−1di (di−2 + di−1)

, −di−1 ≤ x < 0,

(di − x)
(−x2(di−1 + di + di+1) + xdi (di + di+1) + di−1di (di + di+1)

)
di−1d2

i (di + di+1)
, 0 ≤ x < di,

(di − x) (di + di+1 − x)2

didi+1 (di + di+1)
, di ≤ x ≤ di + di+1.

The local parameter vector associated with [xs, xs+1] is d = (ds−1,ds,ds+1) and for any x ∈ [0, ds] the four nonzero funda-
mental functions ψi , i = s − 1, . . . , s + 2 have the expression

http://eurostars.unibo.it/
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ψs−1(x;d) = − x (x − ds)
2

ds−1ds (ds−1 + ds)
,

ψs(x;d) = 1

d2
s

(x − ds)

(
x2

ds + ds+1
+ x (x − ds)

ds−1
− ds

)
,

ψs+1(x;d) = 1

d2
s

x

(
ds (ds−1 + 2x) − x2

ds−1 + ds
− x (x − ds)

ds+1

)
,

ψs+2(x;d) = x2 (x − ds)

dsds+1 (ds + ds+1)
.

A.2. Fundamental functions of the class D5C2 P 2 S4

Recalling our notation di = xi+1 − xi , in the interval [−di−2 − di−1, di + di+1] the expression of the fundamental function 
ψi is given by

ψi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (di−1 + x) (di−2 + di−1 + x)3 (−di−2 + 2di−1 + 2x)

d3
i−2di−1 (di−2 + di−1)

,

−di−2 − di−1 ≤ x < −di−1,

di (di−1 + x)
(
3x3di−1 + d3

i−1 (di−2 + di−1) + 2x4
) − x (di−2 + di−1) (di−1 − 2x) (di−1 + x)3

d4
i−1di (di−2 + di−1)

,

−di−1 ≤ x < 0,

(di − x)
(
(di−1 + di + di+1) (2x4 − 3x3di) + xd3

i (di + di+1) + di−1d3
i (di + di+1)

)
di−1d4

i (di + di+1)
,

0 ≤ x < di,

− (x − di) (−2di + di+1 + 2x) (di + di+1 − x)3

did3
i+1 (di + di+1)

,

di ≤ x ≤ di + di+1.

The local parameter vector associated with [xs, xs+1] is d = (ds−1,ds,ds+1) and for any x ∈ [0, ds] the four nonzero funda-
mental functions ψi , i = s − 1, . . . , s + 2 have the expression

ψs−1(x;d) = x (x − ds)
3 (ds + 2x)

ds−1d3
s (ds−1 + ds)

,

ψs(x;d) =
(ds − x)

(
ds−1

(−3x3ds + d4
s + d3

s ds+1 + 2x4
) + x (ds + ds+1) (ds + 2x) (x − ds)

2
)

ds−1d4
s (ds + ds+1)

,

ψs+1(x;d) = 1

d4
s

x

(
x2 (2x − 3ds) (x − ds)

ds+1
+ −5x3ds + 3x2d2

s + d3
s (ds−1 + x) + 2x4

ds−1 + ds

)
,

ψs+2(x;d) = − x3 (2x − 3ds) (x − ds)

d3
s ds+1 (ds + ds+1)

.

Appendix B. Derivatives generation

Let p0 be a vertex of valence n where we want to compute a set of G1 or G2 compatible derivatives. In this section, we 
denote by pi , i = 1, . . . , n, the endpoints of the edges emanating from p0, by di the parameter intervals of the edges p0 pi
and by f i the vectors pi − p0.

With each edge p0 pi we associate a vector T p0,pi
defined as

T p0,pi = αi

di
f i − 1 − αi

d̄i
f i, (B.1)

where



JID:COMAID AID:1579 /FLA [m3G; v1.182; Prn:20/07/2016; 14:56] P.21 (1-22)

M. Antonelli et al. / Computer Aided Geometric Design ••• (••••) •••–••• 21
αi = d̄i

di + d̄i
, d̄i = −

n∑
j=1
j �=i

cos

(
2π( j − i)

n

)
d j, f i =

n∑
j=1
j �=i

∣∣∣∣cos

(
2π( j − i)

n

)∣∣∣∣ f j. (B.2)

When n = 4, equation (B.1) reduces to the well-known Bessel estimate for computing an approximation of the first derivative 
of a parametric curve (Farin, 2002, Section 9.8). For a general valence n �= 4, T p0,pi

represents a heuristic estimate of the 
first derivative at p0 of the curve segment between p0 and pi . In particular, we can observe that, when n is even and the 
points pi have rotational symmetry with respect to p0, then T p0,pi

corresponds to the Bessel formula applied to the three 
points pi+ n

2
, p0, pi , which are intuitively associated with a curve passing through p0.

At this point, if only G1 compatibility is required, we can simply get an appropriate set of derivatives at p0 by projecting 
the vectors T p0,pi

, i = 1, . . . , n on a common plane.

We will now proceed to determine a G2 compatible set of derivatives. In particular, let τ (1)
p0,pi

and τ (2)
p0,pi

be respectively 
the first and second derivative of the curve segment associated with the edge p0 pi . Our strategy is to construct a polynomial 
P that interpolates p0 and approximates in a least-squares sense a suitable set of points q j, j = 1, . . . , 2n around p0 and 
set τ (1)

p0,pi
and τ (2)

p0,pi
as the derivatives of such polynomial along proper directions. The approximation points q j are chosen 

so that the polynomial P will have a reasonable shape in a small neighborhood of p0. In particular, for each i = 1, . . . , n, qi

and qn+i are respectively the values at parameters di
4 and di

2 of the cubic polynomial λ such that λ(0) = p0, λ′(0) = T p0,pi
, 

λ(di) = pi , λ′(di) = T pi ,p0 . Note that the vector T pi ,p0 represents a derivative at pi , and thus it shall be sampled from 
the adjacent segment of the section curve passing through p i and p0, when this is available, or otherwise computed from 
formulae (B.1)–(B.2).

We exploit a bivariate polynomial P of degree 3 or 2 respectively in the case n ≥ 5 or n = 3, 4. The coefficients of P are 
determined componentwise by minimizing the expression

2n∑
j=1

(
P (x j, y j) − q j

)2
,

where the parametric coordinates (x j, y j) associated with the point q j are given by

(x j, y j) = r j (cosηi, sinηi), j = i,n + i, (B.3)

and the angles ηi, i = 1, . . . , n are obtained by mapping onto the xy plane the spatial configuration formed by the angles 
ζi := ̂T p0,pi

, T p0,pi+1 , i = 1, . . . , n, namely

η1 = 0, ηi = ηi−1 + ζi
2π∑n
j=1 ζ j

, i = 2, . . . ,n.

The value of r j in (B.3) is a free parameter and can be exploited to locally tune the shape of the surface. When the edge 
parameter intervals di are computed according to (6), then a possible choice (which we have used in the proposed examples) 
is

r j = ∥∥q j − p0

∥∥α

2 .

Finally, we can set τ (1)
p0,pi

and τ (2)
p0,pi

, i = 1, . . . , n, to be the first and the second derivatives of P at p0 in the direction 
determined by ηi .
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