منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله تحلیل خطای پسینی روش تقویت مخلوط المان محدود برای جریان دارسی

عنوان فارسی
تجزیه و تحلیل خطای پسینی یک روش تقویت مخلوط المان محدود برای جریان دارسی
عنوان انگلیسی
A posteriori error analysis of an augmented mixed finite element method for Darcy flow
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
14
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E807
رشته های مرتبط با این مقاله
مهندسی مکانیک و ریاضی
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
گروه ریاضی، دانشگاه کاتولیک Sant''ısima کانسپسیون، شیلی
کلمات کلیدی
جریان دارسی، مخلوط المان محدود، تثبیت کننده، برآوردگر خطا پسینی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


We develop an a posteriori error analysis of residual type of a stabilized mixed finite element method for Darcy flow. The stabilized formulation is obtained by adding to the standard dual-mixed approach suitable residual type terms arising from Darcy’s law and the mass conservation equation. We derive sufficient conditions on the stabilization parameters that guarantee that the augmented variational formulation and the corresponding Galerkin scheme are well-posed. Then, we obtain a simple a posteriori error estimator and prove that it is reliable and locally efficient. Finally, we provide several numerical experiments that illustrate the theoretical results and support the use of the corresponding adaptive algorithm in practice.

نتیجه گیری

6. Conclusions


We considered a slight generalization of the method introduced by Masud and Hughes in [1] to the Darcy problem of anisotropic porous media flow. The augmented variational formulation is obtained by adding to the classical dual-mixed variational formulation two weighted residual type terms, that are related with Darcy’s law and the mass conservation equation. We provided sufficient conditions on the stabilization parameters that ensure that the augmented weak formulation is well-posed. Under these same hypotheses, we also proved that the corresponding Galerkin scheme is well-posed and a Cea-type estimate holds whatever finite-dimensional subspaces are used. ´ In particular, we provide a priori error bounds when the fluid velocity is approximated by Raviart–Thomas or Brezzi–Douglas–Marini elements, and the pressure is approximated using continuous piecewise polynomials. We remark that in this case local mass conservation is not guaranteed.


بدون دیدگاه