دانلود رایگان مقاله جریان های نوری فتوسیستم 2 در سیستم ترکیبی اکسید فلز

عنوان فارسی
جریان های نوری فتوسیستم 2 در سیستم ترکیبی اکسید فلز: مسیر انتقال الکترون
عنوان انگلیسی
Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E404
رشته های مرتبط با این مقاله
زیست شناسی
گرایش های مرتبط با این مقاله
علوم سلولی و مولکولی و بیوشیمی
مجله
مجله بیوشیمی و بیوفیزیک (BBA) - انرژی زیستی -
دانشگاه
گروه علوم زندگی، دانشگاه امپریال لندن، انگلستان
کلمات کلیدی
آنزیم اکسید کننده آب، مرکز واکنش فتوسنتزی، فتوسنتز، رابط الکترود پروتئین، پروتئین غشای فتوالکتروشیمی، کوئینون
چکیده

Abstract


We have investigated the nature of the photocurrent generated by Photosystem II (PSII), the water oxidizing enzyme, isolated from Thermosynechococcus elongatus, when immobilized on nanostructured titanium dioxide on an indium tin oxide electrode (TiO2/ITO). We investigated the properties of the photocurrent from PSII when immobilized as a monolayer versus multilayers, in the presence and absence of an inhibitor that binds to the site of the exchangeable quinone (QB) and in the presence and absence of exogenous mobile electron carriers (mediators). The findings indicate that electron transfer occurs from the first quinone (QA) directly to the electrode surface but that the electron transfer through the nanostructured metal oxide is the rate-limiting step. Redox mediators enhance the photocurrent by taking electrons from the nanostructured semiconductor surface to the ITO electrode surface not from PSII. This is demonstrated by photocurrent enhancement using a mediator incapable of accepting electrons from PSII. This model for electron transfer also explains anomalies reported in the literature using similar and related systems. The slow rate of the electron transfer step in the TiO2 is due to the energy level of electron injection into the semiconducting material being below the conduction band. This limits the usefulness of the present hybrid electrode. Strategies to overcome this kinetic limitation are discussed.

نتیجه گیری

Conclusions


By controlling the formation and the thickness of PSII layer immobilized onto TiO2/ITO electrodes and by studying the behavior of the photocurrent in the presence and absence of external mediators and an QB-site inhibitor, we have shown that electrons are transferred to the TiO2 directly from QA −•. This is not unexpected since it is a relatively low potential electron carrier that is close to an exposed surface of the protein and electron transfer by this route has been suggested, though not demonstrated, earlier [30]. Unexpectedly, the rate-limiting step for photocurrent formation is electron transfer through the TiO2. Mobile electron carriers (DCBQ, PpBQ and quercetin) are able to take electrons from the TiO2 to the ITO thereby enhancing the photocurrent. The slow rate of electron transfer through the nanostructured TiO2 is due to its conduction band (Ec) being far above both the reduction potential of QA in PSII (Fig. 7) and also Fermi level (Ef) which is imposed by the applied bias, resulting in very low electron mobility in the nanoporous TiO2. In these circumstance electrons arrive at the semiconductor (in the Fermi level) at an energy level well below the conduction band edge they are thus slow to enter the conduction band if at all. Instead they may remain close to the surface of the material in lower energy states, available for interactions with mediators and slow to migrate to the conducting electrode. It has been suggested that a driving force of at least ΔGinj = −0.2 eV is required in order to obtain efficient electron injection from an excited dye-molecule into the conduction band of a semiconductor [65]. It seems likely that a similar requirement will apply to electrons injected from biological systems. It can be seen that even the short-lived Pheophytin anion radical (Phe/Phe-• Em ~ −500 mV) would be a poor electron donor to TiO2.


بدون دیدگاه