منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله افزایش سرعت و بهینه سازی عدم قطعیت کروماتوگرافی SMB غیر خطی

عنوان فارسی
افزایش سرعت و بهینه سازی عدم قطعیت تعریف کمی کروماتوگرافی SMB غیر خطی با استفاده از مدل کاهش مرتبه
عنوان انگلیسی
Accelerating optimization and uncertainty quantification of nonlinear SMB chromatography using reduced-order models
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
11
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E3054
رشته های مرتبط با این مقاله
شیمی
گرایش های مرتبط با این مقاله
شیمی کاربردی
مجله
کامپیوتر و مهندسی شیمی - Computers and Chemical Engineering
دانشگاه
مجتمع سیستم های فنی دینامیک، آلمان
کلمات کلیدی
روش اساس کاهش یافته، درون یابی تجربی، برآورد خطا، شبیه سازی کروماتوگرافی، تخت در حال حرکت، بهينه سازي کمی، عدم قطعیت
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


A parametrized reduced-order model is constructed and employed as a surrogate for the full-order model in optimization and uncertainty quantification of nonlinear simulated moving bed chromatography. The reduced-order model is obtained by the reduced basis method using an efficient error estimation. The complexity of the model is reduced by an empirical interpolation method applied to the nonlinear part of the model. Due to the reduced size and complexity of the surrogate model, the processes of optimization and uncertainty quantification are sped up by a factor of 10.

نتیجه گیری

6. Conclusions


We have explored using parametric ROMs to accelerate optimization and UQ of the nonlinear SMB chromatography. The parametric ROM is constructed using the RB method, and the nonlinear coupled terms are tackled by the EIM. The order and the complexity of the full-order model are both largely reduced, so the resulting ROM is fairly efficient and globally reliable in the entire parameter domain. Using the ROM, the optimization problem considered is effi- ciently solved. The effect on the purity of the products is analyzed under flow rate uncertainty. It is shown that the optimal solution is robust in a wide range of flow rate ratios. The runtime of the UQ is significantly reduced by using the ROM. Note that the SMB model considered is nonlinear, involves a coupling structure, as well as periodic switching, which are all challenging for MOR. We have shown that the output error estimation derived in Zhang et al.(2015b)is applicable to this nontrivial model. It should also be highlighted that the ROM constructed by the proposed parametric MOR method produces much higher speedup than that using the non-parametric MOR method in Li et al.(2014a).


بدون دیدگاه