منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله برجستگی مش در چند مقیاس در فضای ویژگی شکل

عنوان فارسی
برجستگی مش در چند مقیاس بر اساس تجزیه و تحلیل کم رتبه و اسپارس در فضای ویژگی شکل
عنوان انگلیسی
Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
9
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E614
رشته های مرتبط با این مقاله
ریاضی
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
طراحی هندسی به کمک کامپیوتر - Computer Aided Geometric Design
دانشگاه
دانشکده تکنولوژی نرم افزار، دانشگاه صنعتی دالیان، چین
کلمات کلیدی
برجستگی، تجزیه و تحلیل پراکنده کم رتبه، ساختار ویژگی های شکل
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


This paper advocates a novel multi-scale mesh saliency method using the powerful low-rank and sparse analysis in shape feature space. The technical core of our approach is a new shape descriptor that embraces both local geometry information and global structure information in an integrated way. Our shape descriptor is organized in a layered and nested structure, enabling both multi-scale and multi-level functionalities. Upon devising our novel shape descriptor, the remaining challenge is to accurately capture sub-region (or sub-part) saliency from 3D geometric models. Towards this goal, we exploit our novel shape descriptor to define local-to-global shape context in a vertex-wise fashion and concatenate all the shape contexts to form a feature space, which encodes both local geometry feature and global structure feature. It then paves the way for us to employ the powerful low-rank and sparse analysis in the feature space, because the low-rank components emphasize much more on stronger patch/part similarities, and the sparse components correspond to their differences. By focusing on the sparse components, we develop a versatile, structure-sensitive saliency detection framework, which can distinguish local geometry saliency and global structure saliency in various 3D geometric models. Our extensive experiments have exhibited many attractive properties of our novel shape descriptor, including: being suitable for perception-driven analysis, being structure-sensitive, multi-scale, discriminative, and effectively capturing the intrinsic characteristic of the underlying geometry.

نتیجه گیری

6. Conclusion


In this paper, we have presented a versatile method to detect multi-scale saliency of 3D models, including the local feature saliency and the global structure saliency. The critical and novel technical elements include the structure-aware shape descriptor embracing both multi-scale and multi-level information, the feature space that consists of a local feature subspace and a global structure subspace, and the low-rank approximation and sparse representation based saliency detection. Comprehensive experiments and extensive comparisons with other state-of-the-art methods have demonstrated some key advantages of our method in terms of flexibility, reliability, robustness, and versatility.


بدون دیدگاه