منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله بهینه سازی و طراحی چند مقیاسی با توجه به عدم قطعیت بار

عنوان فارسی
بهینه سازی و طراحی چند مقیاسی با توجه به عدم قطعیت بار
عنوان انگلیسی
Multi-scale robust design and optimization considering load uncertainties
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
16
سال انتشار
2015
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E809
رشته های مرتبط با این مقاله
مهندسی مکانیک و ریاضی
گرایش های مرتبط با این مقاله
ریاضی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
گروه مهندسی مکانیک، دانشگاه صنعتی دالیان، روابط چین
کلمات کلیدی
طراحی چند مقیاسی و بهینه سازی، عدم قطعیت بار، اطمینان فرمول بهینه سازی قوی
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


Uncertainty is ubiquitous in practical engineering design applications. Recent years have witnessed a growing research interest in the study of structural topology optimization problems considering uncertainties. Most of these works, however, are focused on the optimization of macro-scale structures. In the present paper, robust concurrent optimization of material and structure under unknown-but-bounded load uncertainties is investigated in a multi-scale framework. Problem formulation that can allow for the effect of worst-case scenario in a confidence way and the corresponding numerical solution procedure are proposed. It is found that when load uncertainties are considered, optimal material distributions in microstructures tend to be isotropic and Kagome structure seems to be superior to other forms of microstructures. The conclusions drawn from the present work are helpful for manufacturing hierarchical structures with Additive Manufacturing technologies.

نتیجه گیری

5. Concluding remarks


In the present paper, robust concurrent optimization of material and structure under unknown-but-bounded load uncertainties is investigated in a multi-scale framework. Problem formulation that can allow for the effect of worst-case scenario in a confidence way and the corresponding numerical solution procedure are proposed. Numerical examples demonstrate that when load uncertainties are considered, optimal material distributions in microstructures tend to be isotropic and Kagome structure seems to be superior to other forms of microstructures. In the present work, only load uncertainty is considered. Considering material uncertainty, which is ubiquitous in practical engineering design applications and may be possibly induced by material degradation, accidental damage or manufacture error, in a multiscale framework, however, is difficult since structural responses are usually implicit functions of material properties. This will pose great challenges to constructing the corresponding confidence robust formulation and developing the computationally tractable solution algorithms. We will pursue this issue in the future work.


بدون دیدگاه