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Abstract

Uncertainty is ubiquitous in practical engineering design applications. Recent years have witnessed a growing research interest
in the study of structural topology optimization problems considering uncertainties. Most of these works, however, are focused
on the optimization of macro-scale structures. In the present paper, robust concurrent optimization of material and structure under
unknown-but-bounded load uncertainties is investigated in a multi-scale framework. Problem formulation that can allow for the
effect of worst-case scenario in a confidence way and the corresponding numerical solution procedure are proposed. It is found that
when load uncertainties are considered, optimal material distributions in microstructures tend to be isotropic and Kagome structure
seems to be superior to other forms of microstructures. The conclusions drawn from the present work are helpful for manufacturing
hierarchical structures with Additive Manufacturing technologies.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Topology optimization, which aims at optimizing available material distribution in a prescribed design, has
undergone tremendous development since the pioneering work of Bendsoe and Kikuchi [1]. Nowadays, topology
optimization has been used successfully in many industrial fields, such as automotive, aerospace and so on. A state-
of-the-art review and some recent developments in this field can be found in the review articles [2–4] and the references
therein.

Traditionally, topology optimization has often been applied to design macroscopic structures where a black-and-
white material distribution is sought for [4]. Recent years, however, have witnessed an ever increasing research interest
in multi-scale material design and optimization, where the material distributions in micro and macro scales are opti-
mized simultaneously. The driving force for the study of multi-scale optimization comes from two sources. The first
one is the impetus for designing ultra-light materials with relatively high strength/stiffness–weight ratios. Numerous
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theoretical and experimental researches [5] reveal that compared with traditional materials (e.g., steel, aluminum and
ceramic), ultra-light materials such as truss-like materials, cellular materials or porous foam materials, which have
internal microstructures, are superior for multi-functional applications. Therefore if a macroscopic structure is made
from cellular materials, it can be expected that if the corresponding microstructure and the macroscopic configuration
can be optimized concurrently by taking the interaction between different scales into consideration, then the best over-
all system performances may be achieved. Another driving force is the rapid development of the modern fabrication
techniques which make the manufacturing of ultra-light materials with rather complex microstructures possible. For
example, it was reported that with use of self-propagating photopolymer waveguide prototyping approach, ultra-light
metallic micro lattice with structural hierarchy at the nanometer, micrometer, and millimeter scales can be fabri-
cated [6]. Although ultra light (density ρ < 10 µg/cm3), this kind of micro lattice can exhibit complete recovery after
compression exceeding 50% strain, and energy absorption similar to elastomers. Furthermore, the emerging Additive
Manufacturing technique is also a promising way to fabricate materials with very complex anisotropic microstructures.

Rodrigues et al. first developed a hierarchical numerical scheme for optimizing material distribution as well as the
point-wise material microstructures concurrently [7]. In this approach, two inherently coupled problems are solved
where the outer problem deals with the spatial distribution of material on macroscopic (global problem) while the
inner problem addresses the question of optimal choice of microstructure topology. Liu et al. proposed a so-called
PAMP (Porous Anisotropic Material with Penalization) model to optimize the macroscopic and microscopic material
distributions simultaneously [8]. In this approach, unlike the treatment in [7], the material microstructure is assumed
to be uniform at every macro-scale material point in order to meet manufacturing requirements. Later on, the PAMP
approach was also applied successfully to multi-objective design of lightweight thermoelastic structures [9] and multi-
scale design of structures with maximum fundamental frequencies. Recently, Andreasen and Sigmund [10] suggested
a multi-scale topology optimization method to design poroelastic actuators. We also refer the readers to [11–14] for
more successful applications of multi-scale optimization method in different fields.

Despite remarkable achievements have been made for multi-scale design and optimization, it is worth noting
that all of the existing works are carried out in a deterministic setting. Uncertainty is, however, ubiquitous in
practical engineering design applications. A lot of evidences show that solutions to optimization problems can exhibit
remarkable sensitivity to parameter perturbations. Recent years have also witnessed a growing research interest in
the study of structural optimization problems considering uncertainties [15–23]. As for the multi-scale optimization
problems considered in the present work, it can be expected that more attention should be paid to address the issue of
uncertainties. This is because, on the one hand, compared with the fabrication of single scale macroscopic structures,
there is higher probability to introduce manufacturing error when multi-scale structures are fabricated. On the other
hand, since the minimum length scale of a multi-scale structure is usually very small (µm–mm), it will be much more
sensitive to the unavoidable uncertainties. Therefore it is very necessary to take uncertainties into consideration in
multi-scale optimization models otherwise the reliability of a multi-scale optimal design cannot be guaranteed. The
present work is just a first attempt along this direction. In our study, we intend to develop a confidence multi-scale
robust optimization model and the corresponding numerical solution approach considering unknown-but-bounded
load uncertainties. The rest of the paper is organized as follows. Section 2 focuses on the mathematical formulation
of the considered problem. In Section 3, numerical solution aspects including finite element discretization, confidence
reformulation of the worst case scenario finding problem and sensitivity analysis are discussed. Two numerical
examples are presented in Section 4 for demonstrating the effectiveness of the proposed problem formulation and
the numerical solution approach. Finally, some concluding remarks are presented in Section 5.

2. Problem formulation

2.1. Problem statement

The robust optimization problem considered in the present work is to find the material distribution in the micro and
macro scales concurrently with the aim of minimizing the worst case structural compliance under available material
volume constraint. In order to make the solution process computationally tractable, the so called PAMP multi-scale
optimization model proposed in [8], where the microstructure at every material point of a macro-scale structure is
assumed to have the same form, is adopted to describe the material distribution in micro-scale and macro-scale,
respectively (see Fig. 1 for a schematic illustration). Furthermore, the uncertainty of the external load is described by
the classic ellipsoid model, which will be explained in more detail in Section 3.
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Fig. 1. Schematic illustration of the PAMP multi-scale optimization model.

2.2. Mathematical formulation

The optimization problem described above can be formulated in the following form mathematically:

℘U

find ρ(x) ∈ L∞(D), µ(y) ∈ L∞(Y )

min Cρ,µ

s.t.
1

|D|


D

ρ0ρ(x)dV ≤ ς, 0 < ρmin ≤ ρ (x) ≤ 1,

1
|Y |


Y

µ(y)dY = ρ0, 0 < µmin ≤ µ(y) ≤ 1, (2.1)

where Cρ,µ is the global optimal value of the following maximization problem

℘L(ρ, µ)

find f̄ ∈ Uf̄, u(x) ∈


H1(D)

3

max l =


St

f̄ · udS
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s.t.
D

[ρ(x)]p EH
: ∇u : ∇vdV =


St

f̄ · vdS, ∀v ∈ Uad,

u = ū, on Su, (2.2)

with

EH
: ∇u : ∇u = min

χ−Yper

1
|Y |


Y

[µ(y)]p E0
: ∇


u − χ∗


: ∇


u − χ∗


dY. (2.3)

In Eq. (2.1), D and Y denote the macro-scale design domain and the unit cell on micro-scale, respectively. ρ(x)

and µ (y) are the artificial density fields depicting the material distributions in D and Y , respectively. ρ0 denotes
the porosity of the porous material used for constituting the macroscopic structure and ς denotes the upper bound
of the volume fraction of the available solid material, respectively. Yper is the function space χ belongs to and
Yper =


χ |χ ∈ H1 (Y ) , χ is periodic on ∂Y


. The symbol χ∗ in Eq. (2.3) is the character displacement field, which

is periodic on ∂Y and EH is the homogenized elasticity tensor of the porous material. E0 is the fourth order elasticity
tensor of the solid material. Su and St are the displacement prescribed and traction prescribed boundary of the
macro-scale structure, respectively. ū and f̄ are the prescribed displacement and prescribed traction force on Su and
St , respectively. Uad and Uf̄ represent the admissible set of the test functions (i.e., v) and the uncertainty set of f̄,
respectively. ρmin and µmin are the lower bound of ρ and µ, respectively. In Eqs. (2.2) and (2.3), p is a penalization
parameter introduced to suppress the intermediate density values implicitly.

It is worth noting that the above robust optimization problem is essentially a Bi-level program. That is in the
upper level program ℘U , one needs to find the optimal distributions of ρ (x) and µ(y) under prescribed porosity
and available material volume constraints. In order to get the value of the objective function (i.e. the worst case
structural compliance), however, one must solve another mathematical program ℘L(ρ, µ) (in which ρ and µ act as

parameters) to find the worst case load scenario and the corresponding displacement field within Uf̄ ∈

H1(D)

3
,

respectively. At this position, it is also necessary to emphasize that the lower level program ℘L (ρ, µ) must be solved
with global optimality otherwise the robustness of a structure cannot be evaluated accurately. This is because from
theoretical point of view, only the global optimal value of ℘L(ρ, µ) can represent the worst case structural compli-
ance. It is, however, very difficult to obtain the global optimal solution of ℘L(ρ, µ) since it is a non-convex (in fact an
anti-convex) optimization problem. Therefore some further mathematical treatments are needed to on the one hand
ensure the reliability of the obtained solution and on the other hand make the corresponding solution process compu-
tationally tractable. We will come back to this issue in Section 3.

3. Numerical solution aspects

3.1. Discrete problem formulation

In the present work, finite element method (FEM) is utilized to discretize the problem described in Eqs. (2.1)–(2.3).
In both the macroscopic design domain D and the microscopic unit cell Y , the corresponding artificial density fields
ρ(x) and µ(y) are all interpolated by piecewise constant functions, that is

ρ(x) = ρi , ∀x ∈ Ωi , µ(y) = µ j , ∀y ∈ ω j , (3.1)

where


i Ωi = D,Ωi ∩ Ω j = ∅, ∀i ≠ j and


j ω j = Y, ω j ∩ ωk = ∅, ∀ j ≠ k, respectively. Under the
aforementioned FEM discretization, the discrete form of the problem formulation can be written as

℘̃U

find ρ = (ρ1, . . . , ρn)⊤ ∈ Rn, µ = (µ1, . . . , µm)⊤ ∈ Rm

min Cρ,µ

s.t.
n

i=1

ρ0ρi ≤ ζ |D| ,

m
j=1

γ j = ρ0 |Y | ,
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0 < ρmin ≤ ρi ≤ 1, i = 1, . . . , n,

0 < µmin ≤ µ j ≤ 1, j = 1, . . . , m, (3.2)

where Cρ,µ is the global optimal value of the following maximization problem

℘̃L

find t̄ ∈ R l

max l = t̄⊤H⊤K
−1

(ρ, µ)Ht̄

s.t. t̄ ∈ Ut̄, (3.3)

where

K(ρ, µ) =

n
e=1

(ρe)
p


V e
B⊤DH (µ)BdV e (3.4a)

and

DH
i j (µ) =

1
|Y |

m
s=1


χ0

i j − χ∗

i j

⊤

Ks(µs)

χ0

i j − χ∗

i j


, i, j = 1, 2, 3. (3.4b)

In Eq. (3.2), n and m denote the total number of finite elements used for discretizing the macroscopic design domain
D and the unit cell Y , respectively. H is an aggregation matrix which generates the load vector f̄ from its non-zero
components t̄ such that f̄ = Ht̄ [24]. In Eq. (3.4a), B is the strain matrix. K(ρ, µ) is the global stiffness matrix
corresponding to the FEM discretization of D while DH (µ) is the homogenized elastic matrix of the porous material
whose components can be obtained by summing up the strain energies on the unit cell as shown in Eq. (3.4b). In
Eq. (3.4b), Ks(µs) = (µs)p 

Y B⊤D0BdY is the stiffness matrix of the sth element in Y where B and D0 are the strain
matrix and the elasticity matrix corresponding to the solid material, respectively. µs is the artificial density of the sth
element in the microscopic unit cell. The symbols χ0

i j as well as χ∗

i j , i, j = 1, 2, 3 denote the displacement vectors
associated with the unit initial strains and the corresponding characteristic displacement vectors on Y , respectively.
We refer the readers to [25] for more details on the FEM implementation of the asymptotic homogenization theory.

3.2. Uncertain set of the external load

In the present work, the uncertainty of the external loads is described by the following ellipsoid model

Ut̄ =


t̄|

t̄ − t̄0

⊤ B̄i

t̄ − t̄0


− 1 ≤ 0, i = 1, . . . , s


, (3.5)

where t̄0 is the nominal aggregated load vector generated by the nominal non-zero components of f̄ (external
load vector) and B̄i , i = 1, . . . , s are the shape matrices which represent the correlations between the individual
components of t̄ (see Fig. 2 for reference). As pointed in many references [17,18], ellipsoid model is a very powerful
tool to describe the unknown-but-bounded uncertainties especially when the exact probability information of the
uncertainty is not available. Compared with the interval model, it also has the advantage of being capable of describing
the correlations between different uncertain variables.

3.3. Confidence reformulation of the lower level program

As pointed in the previous section, it is very necessary to obtain the global optima of the lower level programs in
Eqs. (2.2) and (3.3) in order to evaluate the worst case structural compliance accurately (see Fig. 3 for a schematic
illustration). However, a careful observation of the inner program in Eq. (3.3) indicates that it is in fact an anti-convex
program (maximization of a quadratic function on a convex set) where many local optima may exist in the feasible
set. Under this circumstance, it is highly possible that the numerical solution algorithm of ℘̃L will get stuck at a local
optimum and therefore underestimates the worst case structural compliance severely. This means that if one solves
℘̃L directly, the reliability of the optimal solution thus obtained cannot be fully assured at least theoretically. It is also
worth noting that in fact the Bi-level program in Eqs. (3.2) and (3.3) is very difficult to deal with. As pointed out by
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Fig. 2. Uncertainty description of the external load.

Fig. 3. Local optimum and global optimum in robust optimization. If the concerned function is a non-convex function of the uncertain parameters,
the computed worst-case structural response (local maximum) may underestimate the true worst-case structural response (global maximum)
severely.

Dempe and Dutta [26], for a general Bi-level program (it is not difficult to prove that ℘̃L does can be transformed to
the following form equivalently) min

x,y
{F(x, y) : x ∈ X, y ∈ φ(x) ∩ Y } ,

y ∈ φ(x) := Arg min
y

{ f (x, y) : g(x, y) ≤ 0} ,
(3.6)

only when the lower level program is convex with respect to y for every fixed x and some regularity conditions are
satisfied, the equivalence between the global optimal solution of Eq. (3.6) and that of a single level program can
be established. If the convexity requirement of the lower level program cannot be satisfied, it is even impossible
to establish the conditions characterizing the critical points of Eq. (3.6). Furthermore, if the lower level program is
not convex, the computation efforts associated with solving the Bi-level program may be very large. We refer the
readers to [21] for more discussions and examples on the necessity of constructing confidence formulations for robust
optimization.

Based on the above discussions, in the following, we will employ the method developed in [21] to construct a
confidence reformulation of ℘̃L in Eq. (3.3) with use of the so-called Semi-Definite Programming (SDP) relaxation
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technique [27]. The essential idea is that instead of tackling the non-convex lower level program ℘̃L directly, a
conservative convex program ℘̂L , whose global optimal value is a strict upper bound of the global optimal value
of ℘̃L , is solved. This can be achieved by constructing the dual problem of ℘̃L . Following the same steps as in [21],
℘̂L , which is a linear SDP problem, can be written as

℘̂L

find t ∈ R, λ = (λ1, . . . , λs)
⊤

∈ Rp
+

min t

s.t.

G =


−M̄ +

s
i=1

λi B̄i −

s
i=1

λi B̄i t̄0

sym.

s
i=1

λi (t̄⊤0 B̄i t̄0 − 1) + t

 < 0,

λi ≥ 0, i = 1, . . . , s, (3.7)

with M̄ = H⊤K−1H.
If t = C̃ρ,µ is the global optimal value of ℘̂L and l = Cρ,µ is the global optimal value of ℘̃L , then from the

theorem of weak duality in convex analysis [27], the following inequality:

Cρ,µ ≤ C̃ρ,µ, (3.8)

always holds. This means that C̃ρ,µ is always a conservative estimation of the worst case structural compliance.
Furthermore, based on the strong duality theorem [27], there is in fact no dual gap (i.e., Cρ,µ = C̃ρ,µ) between ℘̃L
and ℘̂L if there is only one ellipsoid (i.e. s = 1). It is also worth noting that ℘̂L is a convex SDP problem which can
be solved very efficiently by modern interior point algorithms. This is very helpful for alleviating the computational
burden in solving the Bi-level optimization problem. We refer the readers to [21] for more discussions on this aspect.

3.4. Sensitivity analysis

In order to solve the Bi-level program in Eqs. (3.2) and (3.3) with use of gradient-based optimization algorithms, we
need the sensitivities of C̃ρ,µ with respect to ρ(x) and µ(y). As discussed in [28], under some regularity conditions,
these quantities can be obtained by the perturbation analysis of a linear SDP problem with respect to its parameters.
Denoting

C̃ρ,µ = min
t∈R,λ≥0

{t |G(t, λ; ρ, µ) < 0} , (3.9)

where

G(t, λ; ρ, µ) =


−M̄ +

s
i=1

λi B̄i −

s
i=1

λi B̄i t̄0

sym.

s
i=1

λi


t̄⊤0 B̄i t̄0 − 1


+ t

 , (3.10)

then according to the theoretical results obtained in [28] (assuming that required regularity conditions are satisfied),
we have

∂C̃ρ,µ (ρ, γ )

∂ρi
=

∂L (t∗, λ∗, Y∗
; ρ, µ)

∂ρi
= trace


Y∗⊤Gρi


, (3.11)

∂C̃ρ,µ (ρ, γ )

∂µ j
=

∂L (t∗, λ∗, Y∗
; ρ, µ)

∂µ j
= trace


Y∗⊤Gµ j


, (3.12)
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where

L = L (t, λ, Y; ρ, µ) = t − Y · G(t, λ; ρ, µ) + Σ⊤ (−λ) , (3.13a)

Gρi =
∂G
∂ρi

= −

∂M̄
∂ρi

0

0 0

 (3.13b)

and

Gµ j =
∂G
∂µ j

= −

 ∂M̄
∂µ j

0

0 0

 , (3.13c)

respectively. In Eqs. (3.11), (3.12) and (3.13a), L is the Lagrange function of ℘̂L and Y as well as Σ are the correspond-
ing Lagrange multipliers associated with the constraint functions G(t, λ; ρ, µ) < 0 and λ ≥ 0, respectively. t∗, λ∗

and Y∗ are the optimal values of the primal and dual variables (ρ and µ are fixed) associated with ℘̂L , respectively.

The values of ∂M̄/∂ρi and ∂M̄/∂µ j in Eqs. (3.13b) and (3.13c) can be obtained as follows.

Let Z ∈ Rnd
×nm

(here nd is the dimension of f̄ and nm is the number of the non-zero components of f̄, respectively)
is the solution of the following matrix equation

KZ = H, (3.14)

where K ∈ Rnd
×nd

and H ∈ Rnd
×nm

, respectively. Then we have

M̄ = Z⊤KZ. (3.15)

In light of Eq. (3.15), it yields that

∂M̄
∂ρi

=
∂

Z⊤KZ


∂ρi

=
∂Z⊤

∂ρi
KZ + Z⊤

∂K
∂ρi

Z + Z⊤K
∂Z
∂ρi

. (3.16)

From Eq. (3.14), the following relationship holds (note that ∂H/∂ρi = 0)

∂K
∂ρi

Z + K
∂Z
∂ρi

= 0, (3.17)

which implies that

Z⊤
∂K
∂ρi

Z + Z⊤K
∂Z
∂ρi

= 0 (3.18a)

and

∂Z⊤

∂ρi
KZ = −Z⊤

∂K
∂ρi

Z. (3.18b)

Since

K(ρ, µ) =

n
j=1


ρ j
p


V j
B⊤DH (µ)BdV j ,
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we finally arrive at the result that

∂M̄
∂ρi

= −Z⊤


p (ρi )

p−1


V i
B⊤DH (µ)BdV i


Z. (3.19)

Similarly, we also have

∂M̄
∂µ j

= −Z⊤


n

j=1


ρ j
p


V j
B⊤

∂DH (µ)

∂µ j
BdV j


Z, (3.20)

where

∂ DH
kl (µ)

∂µ j
=

1
|Y |

p

χ0

kl − χ∗

kl

⊤ 
µ j
p−1 K0 j


χ0

kl − χ∗

kl


, k, l = 1, 2, 3 (3.21)

with K0 j denoting the element stiffness matrix of the j th element in Y when µ j = 1.

3.5. Sensitivity filter

It is well known that in SIMP (Solid Isotropic Material with Penalization) based topology optimization framework,
regularization schemes are needed to obtain mesh-independent results. Among numerous approaches proposed to
suppress the numerical instabilities in topology optimization, the sensitivity filter approach proposed by Sigmund [29]
is the most efficient one. The original form of the sensitivity filter scheme can be written as

∂l

∂ρk
=

1

ρk

N
i=1

Ĥi

N
i=1

Ĥiρi
∂l

∂ρi
, (3.22)

where ∂l/∂ρk and ∂l/∂ρi are the filtered and unfiltered sensitivities of the concerned objective/constraint functional
l (for the considered problem, l is the structural compliance). The symbols ρk and ρi denote the densities of the
considered kth element and the i th element contained in the filter region of element k. N is the total number of
elements in the spherical filter region with radius R. The weight factor Ĥi are defined as

Ĥi = R − dist(i, k), ∀i such that dist (i, k) ≤ R (3.23)

where dist(i, k) is the distance between the centers of element i and k. Although powerful enough, an unpleasant
behavior of the filter scheme in Eq. (3.22) is that it will inevitably lead to the so-called boundary diffusion effect,
i.e., appearance of gray elements along the structural boundary. In order to alleviate the boundary diffusion effect
associated with the filter scheme in Eq. (3.22), here, we adopt a modified filter scheme [30], which can be expressed
in the following form:

∂l

∂ρk
=

1

(ρk)
η

+


4

j=1
ρ j

ν

N
i=1

Ĥi (ρi )
γ ∂l

∂ρi

N
i=1

Ĥi

, (3.24)

where 0 < η < 1, γ ≥ 1 and 0 < ν < 1 are three adjustable parameters. In Eq. (3.24), the summation in
4

j=1 ρ j
is taken for the four second-nearest neighborhood elements around element k. The basic mechanism of this modified
filter scheme responsible for alleviating the boundary diffusion effect is to appropriately reduce the value of the
sensitivity with respect to ρk that takes small value in a non-checkerboard distribution of ρ. We refer the readers to
Fig. 4 and [30] for a schematic illustration and the demonstration of the effectiveness of this treatment. Numerical
experiments in Section 4 show that the above filter scheme is very effective to eliminate gray elements along the
structural boundary and therefore is helpful for obtaining nearly black-and-white designs.
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Fig. 4. A schematic illustration of the proposed modified filter approach.

3.6. Solution scheme

Based on the above analysis, the solution procedure of the considered multi-scale robust optimization problem can
be summarized as follows:

(1) Set k = 0 and initialize the design variables ρ(x) = ρ0 (x) and µ (y) = µ0 (y) respectively;
(2) Compute the homogenized elastic matrix DH based on µk (y);
(3) For ρ(x) = ρk (x) and µ(y) = µk (y), solve the lower level SDP problem and get C̃ρk ,µk and ∂C̃ρk ,µk /∂ρ as well

as ∂C̃ρk ,µk /∂µ, respectively;
(4) Solve the upper level optimization with use of gradient-based optimization algorithm (e.g., MMA (Method of

Moving Asymptotes) [31]) and update ρk (x) and µk (y), respectively;
(5) Check convergence, If converged then stop; otherwise set k = k + 1, ρk (x) ⇒ ρk+1 (x) , µk (y) ⇒ µk+1 (y) and

go to step 2.

The above solution procedure is illustrated in the flow chart shown in Fig. 5.

4. Numerical examples

In this section, the proposed approach is applied to several two dimensional (with unit thickness) plane stress
examples to illustrate its effectiveness. All involved quantities are dimensionless for the sake of simplicity. In all
examples, the macroscopic design domains and the microscopic unit cells are discretized by uniform four-node
bilinear square elements, which is a popular choice for topology optimization and material design problems. The
Young’s modulus and the Poisson’s ratio of the isotropic solid material are chosen as E = 10 and ν = 0.3, respectively.
The filter radius is set to be 1.2 for sensitivities with respect to both microscopic and macroscopic design variables. In
all example, we take ρmin = 1.0e−03, µmin = 1.0e−03 and p = 3, respectively and the values of the parameters η, ν

and γ in the modified filter scheme are chosen as 0.1, 0.05 and 2, respectively, based on our numerical experiences.
Furthermore, the upper level optimization problems in Eq. (3.2) are solved by the MMA algorithm while the lower
level linear SDP problems in Eq. (3.7) are solved by SDPA [32], a reliable LSDP solver.

In all numerical examples, the initial values of the macroscopic design variables are all taken as ρ0
= 0.5. In

contrast, we take the non-uniform design shown in Fig. 6 as the starting point for microscopic topology optimization
since it is well known that uniform initial design cannot be used to solve material design problems [33].
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Fig. 5. The flow chart of the optimization procedure.

Fig. 6. The initial design of the microscopic unit cell.

4.1. L-shape beam example

In this example, the classical L-shape beam problem shown in Fig. 7 is investigated. The finite element meshes are
40 × 40 for macroscopic design domain and 20 × 20 for microscopic unit cell, respectively. The upper bound of the
volume ratio of the available solid material is ς = 0.12 and the apparent density of the cellular material is ρ0 = 0.4.

For comparison purpose, first, the example is examined with a deterministic nominal load t̄0 = (0, 0.5)⊤ applied
at the left-middle point of the design domain by applying the traditional and the modified filter scheme in Eq. (3.24),
respectively. The optimal material distributions on different length scales are shown in Fig. 8(a) and (b), respectively.
It can be observed from these figures that traditional filter scheme will lead to strong boundary diffusion effect while
the result obtained under the modified filter scheme is almost black-and-white.
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Fig. 7. The L-shape beam example.

Fig. 8. Optimal material distributions of L-shape beam example.

Next, the same problem is solved with use of problem formulation Eq. (3.3) considering uncertain load, which

can be described as

t̄ − t̄0

⊤ B̄

t̄ − t̄0


− 1 ≤ 0 with B̄ =


16 0
0 16


. The corresponding optimization results are

shown in Fig. 8(c) and (d), respectively. It can be observed from Fig. 8 that compared with the deterministic optimal
solution, considering the uncertainty of the external load will not change the macroscopic structure too much. The
microscopic material distribution is, however, quite different in two cases. It seems that the form of microstructure is
more sensitive to the load uncertainties than that of macrostructure for the problem considered. Numerical results also
reveal that when cellular materials are available, it is more economic to resist the direction-variable uncertainty load
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Fig. 9. The iteration history of the L-shaped beam example under uncertain load.

Fig. 10. The cantilever beam example.

by rendering a more isotropic (i.e., with higher structural symmetry) microscopic material distribution on micro-scale
rather than changing the configuration of macrostructure, which determines the primary path of load transfer.

Fig. 8 also indicates that the difference between the optimal microscopic material distributions obtained under two
cases is solely due to the consideration of load uncertainties, but not due to the adoption of modified filter approach.

The convergence history of this example is shown in Fig. 9. We can find that after a slight increase, the value of
the objective function decreases dramatically within ten iteration steps and tends to be converged within another ten
steps. This indicates a rapid convergence rate for this example.

4.2. Cantilever beam example

In this example, the cantilever beam problem shown in Fig. 10 is investigated. The macroscopic design domain and
microscopic unit cell are discretized by a 40 × 20 mesh and a 20 × 20 mesh, respectively. The uncertain load applied

at the right-middle point is described by

t̄ − t̄0

⊤ B̄

t̄ − t̄0


− 1 ≤ 0 with t̄0 = 0 and B̄ =


1 0
0 1


. In this example,

we intend to discuss the effect of the parameters ρ0 and ς on the multi-scale optimal solutions. First, the considered
problem is solved with fixed value of ρ0 (i.e., ρ0 = 0.4) but different values of ς (i.e., ς = 0.14, ς = 0.16, ς = 0.18
and ς = 0.2, respectively). The corresponding optimal material distributions are shown in Table 1. From this table,
it is observed that the compliance of the optimal structure decreases as ς increases but the material distribution in the
microscopic unit cell is almost the same (all are Kagome type microstructures) as ς varies. Next, optimizations are
carried out under fixed value of ς (i.e., ς = 0.2) but this time the values of ρ0 are changed from 0.4 to 0.7. Under this
circumstance, the corresponding optimal material distributions are shown in Table 2. From Table 2, it can be observed
that as ρ0 increases, the structural members in the microscopic unit cell become thicker while the structural members
(composed by the cellular material with density ρ0) in the macroscopic structure become thinner in order to satisfy the



X. Guo et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 994–1009 1007

Table 1
Numerical results under uncertain load (with fixed ρ0).

ς ρ0 Compliance Macro-scale structural topology Micro-scale structural topology

0.14 0.4 15.3024

0.16 0.4 14.3120

0.18 0.4 10.1428

0.20 0.4 9.0691

Table 2
Numerical results under uncertain load (with fixed ς ).

ς ρ0 Compliance Macro-scale structural topology Micro-scale structural topology

0.2 0.4 9.0691

0.2 0.5 8.4658

0.2 0.6 7.7189

0.2 0.7 6.9431

available solid material volume upper bound. As in the previous example, the Kagome like microstructure with near
isotropic material distribution seems to be optimal to enhance the robustness of the structure under uncertain external
loads. It is also very interesting to note that the resulting microstructure is similar to that of deep-sea sponges (shown
in Fig. 11), which are created through millions years of natural evolution and very helpful to resist the forces induced
by currents from different directions [34].

5. Concluding remarks

In the present paper, robust concurrent optimization of material and structure under unknown-but-bounded load
uncertainties is investigated in a multi-scale framework. Problem formulation that can allow for the effect of worst-case
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Fig. 11. Hierarchical structure of deep-sea sponge.
Source: From [34].

scenario in a confidence way and the corresponding numerical solution procedure are proposed. Numerical examples
demonstrate that when load uncertainties are considered, optimal material distributions in microstructures tend to be
isotropic and Kagome structure seems to be superior to other forms of microstructures. In the present work, only
load uncertainty is considered. Considering material uncertainty, which is ubiquitous in practical engineering design
applications and may be possibly induced by material degradation, accidental damage or manufacture error, in a multi-
scale framework, however, is difficult since structural responses are usually implicit functions of material properties.
This will pose great challenges to constructing the corresponding confidence robust formulation and developing the
computationally tractable solution algorithms. We will pursue this issue in the future work.

Acknowledgments

The financial support from the National Natural Science Foundation (10925209, 91216201, 11372004, 11402048),
China Postdoctoral Science Foundation (2014M561221), 973 Project of China (2010CB832703), Program for
Changjiang Scholars, Innovative Research Team in University (PCSIRT) and 111 Project (B14013) is gratefully
acknowledged.

References

[1] M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech.
Engrg. 71 (1988) 197–224.

[2] H.A. Eschenauer, N. Olhoff, Topology optimization of continuum structures: a review, Appl. Mech. Rev. 54 (2001) 331–390.
[3] X. Guo, G.D. Cheng, Recent development in structural design and optimization, Acta Mech. Sin. 26 (2010) 807–823.
[4] O. Sigmund, K. Maute, Topology optimization approaches, Struct. Multidiscip. Optim. 48 (2013) 1031–1055.
[5] R. Lakes, Materials with structural hierarchy, Nature 361 (1993) 511–515.
[6] T.A. Schaedler, A.J. Jacobsen, A. Torrents, et al., Ultralight metallic microlattices, Science 334 (2011) 962–965.
[7] H. Rodrigues, J.M. Guedes, M.P. Bendsoe, Hierarchical optimization of material and structure, Struct. Multidiscip. Optim. 24 (2002) 1–10.
[8] L. Liu, J. Yan, G.D. Cheng, Optimum structure with homogeneous optimum truss-like material, Comput. Struct. 86 (2008) 1417–1425.
[9] J.D. Deng, J. Yan, G.D. Cheng, Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous

porous material, Struct. Multidiscip. Optim. 47 (2013) 583–597.
[10] C.S. Andreasen, O. Sigmund, Multiscale modeling and topology optimization of poroelastic actuators, Smart Mater. Struct. 21 (2012) 065005.

1–14.
[11] X. Yan, X. Huang, Y. Zha, Y.M. Xie, Concurrent topology optimization of structures and their composite microstructures, Comput. Struct.

133 (2014) 103–110.

http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref1
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref2
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref3
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref4
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref5
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref6
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref7
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref8
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref9
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref10
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref11


X. Guo et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 994–1009 1009

[12] Z.H. Zuo, X.D. Huang, J.H. Rong, Y.M. Xie, Multi-scale design of composite materials and structures for maximum natural frequencies,
Mater. Des. 51 (2013) 1023–1034.

[13] X. Huang, S.W. Zhou, Y.M. Xie, Q. Li, Topology optimization of microstructures of cellular materials and composites for macrostructures,
Comput. Mater. Sci. 67 (2013) 397–407.

[14] Y.M. Xie, Z.H. Zuo, X.D. Huang, J.H. Rong, Convergence of topological patterns of optimal periodic structures under multiple scales, Struct.
Multidiscip. Optim. 46 (2012) 41–50.

[15] C.P. Pantelides, S. Ganzerli, Design of trusses under uncertain loads using convex models, J. Struct. Engrg. 124 (1998) 318–329.
[16] M. Lombardi, R.T. Haftka, Anti-optimization techniques for structural design under load uncertainties, Comput. Methods Appl. Mech. Engrg.

157 (1998) 19–31.
[17] F.T.K. Au, Y.S. Cheng, L.G. Tham, G.W. Zeng, Robust design of structures using convex models, Comput. Struct. 81 (2003) 2611–2619.
[18] I. Elishakoff, R.T. Haftka, J. Fang, Structural design under bounded uncertainty optimization with anti-optimization, Comput. Struct. 53

(1994) 1401–1405.
[19] S.P. Gurav, J.F.L. Goosen, F. VanKeulen, Bounded-but-unknown uncertainty optimization using design sensitivities and parallel computing:

application to MEMS, Comput. Struct. 83 (2005) 1134–1149.
[20] C. Jiang, X. Han, G.R. Liu, Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval,

Comput. Methods Appl. Mech. Engrg. 196 (2007) 4791–4800.
[21] X. Guo, W. Bai, W.S. Zhang, X.X. Gao, Confidence structural robust design and optimization under stiffness and load uncertainties, Comput.

Methods Appl. Mech. Engrg. 198 (2009) 3378–3399.
[22] X. Guo, J.M. Du, X.X. Gao, Confidence structural robust optimization by nonlinear semidefinite programming-based single-level formulation,

Internat. J. Numer. Methods Engrg. 86 (2011) 953–974.
[23] X. Guo, W. Bai, W.S. Zhang, Confidence extremal structural response analysis of truss structures under static load uncertainty via SDP

relaxation, Comput. Struct. 87 (2009) 246–253.
[24] A. Takezawa, S. Nii, M. Kitamura, N. Kogiso, Topology optimization for worst load conditions based on the eigenvalue analysis of an

aggregated linear system, Comput. Methods Appl. Mech. Engrg. 200 (2011) 2268–2281.
[25] B. Hassani, E. Hinton, A review of homogenization and topology optimization I—homogenization theory for media with periodic structure,

Comput. Struct. 69 (1998) 707–717.
[26] S. Dempe, J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Math. Program. A

131 (2012) 37–48.
[27] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
[28] A. Shapiro, First and second order analysis of nonlinear semi-definite programs, Math. Program. 77 (1997) 301–320.
[29] O. Sigmund, On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach. 25 (1997) 495–526.
[30] W.S. Zhang, W.L. Zhong, X. Guo, An explicit length scale control approach in SIMP-based topology optimization, Comput. Methods Appl.

Mech. Engrg. 282 (2014) 71–86.
[31] K. Svanberg, The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg. 24 (1987)

359–373.
[32] K. Fujisawa, M. Kojima, K. Nakata, M. Yamashita, SDPA User’s Manual Version 6.0.
[33] O. Sigmund, Materials with prescribed constitutive parameters: an inverse homogenization problem, Int. J. Solids Struct. 31 (1994)

2313–2329.
[34] J. Aizenberg, J.C. Weaver, M.S. Thanawala, V.C. Sundar, D.E. Morse, P. Fratzal, Skeleton of euplectella sp. structural hierarchy from the

nanoscale to the macroscale, Science 309 (2005) 275–277.

http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref12
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref13
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref14
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref15
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref16
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref17
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref18
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref19
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref20
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref21
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref22
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref23
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref24
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref25
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref26
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref27
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref28
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref29
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref30
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref31
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref33
http://refhub.elsevier.com/S0045-7825(14)00384-3/sbref34

	Multi-scale robust design and optimization considering load uncertainties
	Introduction
	Problem formulation
	Problem statement
	Mathematical formulation

	Numerical solution aspects
	Discrete problem formulation
	Uncertain set of the external load
	Confidence reformulation of the lower level program
	Sensitivity analysis
	Sensitivity filter
	Solution scheme

	Numerical examples
	L-shape beam example
	Cantilever beam example

	Concluding remarks
	Acknowledgments
	References


