ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Abstract:
To investigate the load-carrying capacity of high-strength concrete-encased steel angle (CES-A) columns, in which corner steel angles are encased in concrete and transmit column loads directly, a numerical study was performed by using a proposed analysis model. The proposed model considered the strain compatibility, confinement effect, local buckling, and premature cover-spalling, and was verified against previous experimental study results. To investigate the effect of design parameters, a parametric study was conducted, and based on the parametric study results, a simple approach was also discussed to predict the residual strength (2nd peak load) after spalling of concrete cover at corners (1st peak load). The numerical investigations showed that when steel contribution and confinement efficiency are high, CES-A columns exhibit relatively large load-carrying capacity even after cover-spalling, due to the maintained strength of confined concrete and yielding of steel angles, and the proposed simple approach gave a good prediction for the residual strength.
5. Conclusions To investigate the load-carrying capacity of high-strength CES-A columns, in which corner steel angles are encased in concrete and transmit column loads directly, a numerical study was performed using a proposed analysis model. The findings of the numerical study are summarized as follows.
(1) Considering the strain compatibility, confinement effect of steel angles and transverse reinforcement, and local buckling of steel angles and longitudinal bars, nonlinear numerical analysis was performed. In the analysis, the premature spalling of concrete cover at corners and the effect of local buckling of steel angles on confinement, which are the distinctive local failure mechanisms of CES-A columns, were also taken into account.
(2) For verification, the numerical analysis results were compared with the previous experimental study results. The proposed model gave fairly good predictions for the peak load, secant stiffness at the peak load, and post-beak behavior. To investigate the effect of design parameters (strength of concrete; strength, area, and compactness of steel angles; strength, thickness, and spacing of battens; eccentricity of axial load; and slenderness by varying column length and sectional size), a parametric study was also conducted.