Conclusion
In this study, liquefaction potential is evaluated in Babol city through four deterministic procedures, including Seed, OCDI, Iwasaki and Highway Bridge of Japan methods, respectively and one probabilistic approach, which is the reliability method. Almost 60 boreholes are analyzed in the area of study and liquefied and nonliquefied regions are determined. To better understand the results, analyzed data are presented for microzonation maps. There are almost similar answers in the central and northern areas in all maps derived from deterministic procedures, which can be concluded that central areas of Babol are recognized as liquefaction with high severety; however, considerable discrepancies resulted in the answers in the southern part of Babol and this issue demonstrated the weakness of the deterministic approaches, since similar data are obtained with different results. After assessing and analyzing all data by reliability method in terms of determining liquefaction and nonliquefaction areas, a borderline in a 2D environment, including (CSR) and (Nspt) is obtained. Liquefaction assessment can be made through this borderline. The initial impression from the microzonation map which is obtained by probabilistic approach is that almost all areas in Babol, except for the northern part of the city are considered as being liquefied with different intensity. Finally, by comparing the maps obtained for the deterministic and probabilistic methods it is concluded that the map obtained from a reliability method had the highest accuracy. From all that have been discussed so far, by comparing the maps obtained by deterministic and probabilistic procedures, it is concluded that the map which is obtained from a reliability approach possessed the highest accuracy.