منوی کاربری
  • پشتیبانی: ۴۲۲۷۳۷۸۱ - ۰۴۱
  • سبد خرید

دانلود رایگان مقاله پری کاندیشنر بلوک FETI-DP برای استوکس و سیستم خطی ارتجاعی مخلوط

عنوان فارسی
پری کاندیشنر بلوک FETI-DP برای استوکس و سیستم خطی ارتجاعی مخلوط
عنوان انگلیسی
Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems
صفحات مقاله فارسی
0
صفحات مقاله انگلیسی
17
سال انتشار
2016
نشریه
الزویر - Elsevier
فرمت مقاله انگلیسی
PDF
کد محصول
E764
رشته های مرتبط با این مقاله
مهندسی مکانیک
گرایش های مرتبط با این مقاله
طراحی کاربردی
مجله
روشهای کامپیوتری در مکانیک کاربردی و مهندسی - Computer Methods in Applied Mechanics and Engineering
دانشگاه
دانشگاه میلان، ایتالیا
کلمات کلیدی
تجزیه و تحلیل ایزوهندسی، استوکس و سیستم های خطی ارتجاعی مخلوط، روش تجزیه دامنه
۰.۰ (بدون امتیاز)
امتیاز دهید
چکیده

Abstract


The aim of this work is to construct and analyze a FETI-DP type domain decomposition preconditioner for isogeometric discretizations of the Stokes and mixed linear elasticity systems. This method extends to the isogeometric analysis context the preconditioner previously proposed by Tu and Li (2015) for finite element discretizations of the Stokes system. The resulting isogeometric FETI-DP algorithm is proven to be scalable in the number of subdomains and has a quasi-optimal convergence rate bound which is polylogarithmic in the ratio of subdomain and element sizes. Extensive two-dimensional numerical experiments validate the theory, investigate the behavior of the preconditioner with respect to both the spline polynomial degree and regularity, and show its robustness with respect to domain deformation, material incompressibility and presence of elastic coefficient discontinuities across subdomain interfaces.

نتیجه گیری

6. Conclusions


We have developed a FETI-DP type domain decomposition preconditioner for isogeometric discretizations of the Stokes and mixed linear elasticity systems. This work extends to isogeometric discretizations the method proposed by Li and Tu in their pioneering papers [13,14] for finite element discretizations of the Stokes system. Following the algebraic theory of [14] and applying some isogeometric technical tools developed in our previous works [5,10], we can prove that the proposed FETI-DP method is scalable in the number of subdomains and quasi-optimal in the ratio of subdomain and element sizes. Numerical experiments in the plane have confirmed the scalability and quasi-optimality of the proposed method. The numerical tests investigating the behavior of the preconditioner with respect to spline polynomial degree and regularity have shown that, in case of maximal subdomains interface regularity kΓ = p − 1, the FETI-DP preconditioner works fine for p = 2, 3, 4 and starts degenerating for p ≥ 5. The reason of such sub-optimal behavior for p ≥ 5 and maximal interface regularity could be attributed to the non-optimal choice of scaling functions, as observed in our previous isogeometric BDDC paper [5] for scalar elliptic problems. A possible remedy could be the use of deluxe scaling functions, see e.g. [10], but the extension of deluxe scaling to saddle point problems is still an open problem even for standard finite element discretizations. In case of reduced subdomains interface regularity, instead, the FETI-DP preconditioner presents a quasi-optimal behavior up to p = 8. Finally, further numerical tests have shown the robustness of the FETI-DP solver with respect to domain deformations, material incompressibility and the presence of discontinuities of the elastic coefficients across subdomains.


بدون دیدگاه