ترجمه مقاله نقش ضروری ارتباطات 6G با چشم انداز صنعت 4.0
- مبلغ: ۸۶,۰۰۰ تومان
ترجمه مقاله پایداری توسعه شهری، تعدیل ساختار صنعتی و کارایی کاربری زمین
- مبلغ: ۹۱,۰۰۰ تومان
Abstract
Objective: To understand the effects of interviewers on the responses they collect for measures of food security, income and selected survey quality measures (i.e. discrepancy between reported Supplemental Nutrition Assistance Program (SNAP) status and administrative data, length of time between initial and final interview, and missing income data) in the US Department of Agriculture’s National Household Food Acquisition and Purchase Survey (FoodAPS). Design: Using data from FoodAPS, multilevel models with random interviewer effects were fitted to estimate the variance in each outcome measure arising from effects of the interviewers. Covariates describing each household’s socio-economic status, demographics and experience in taking the survey, and interviewer-level experience were included as fixed effects. The variance components in the outcomes due to interviewers were estimated. Outlier interviewers were profiled. Setting: Non-institutionalized households in the continental USA (April 2012– January 2013). Subjects: Individuals (n 14 317) in 4826 households who responded to FoodAPS. Results: There was a substantial amount of variability in the distributions of the outcomes examined (i.e. time between initial and final interview, reported values for food security, individual income, missing income) among the FoodAPS interviewers, even after accounting for the fixed effects of the household- and interviewer-level covariates and removing extreme outlier interviewers. Conclusions: Interviewers may introduce error in food acquisition survey data when they are asked to interact with the respondents. Managers of future surveys with similarly complex data collection procedures could consider using multilevel models to adaptively identify and retrain interviewers who have extreme effects on data collection outcomes.
Conclusion
Despite these limitations, the fact that a multilevel modelling approach was able to identify unusual interviewers lends credibility to our suggested approach of ‘live’ field monitoring. With a well-specified model for important outcomes and survey quality measures, this approach could potentially identify interviewers who may be performing differently, leading to recommendations for retraining. Ultimately, this could reduce interviewer effects for the outcomes that are important to a given survey, which in the case of FoodAPS would be any food insecurity and other variables related to food acquisition.