7. Conclusion and future work
In this paper, we present hierarchical grid conversions and use it to systematically define refinements. We extend an existing patch-based hierarchical data structure called ACM for handling connectivity queries of semiregular models, to support hexagonal semiregular models and some additional refinements. From this enhanced support and newly defined conversions, we can best apply a given grid-type to the application-specific challenge. Based on the conversions between regular grids, we can extend ACM to support hexagonal semiregular models as well as a wider range of refinements such as 4–8 and 1-to-7 refinements. We have proposed new types of refinements that may be used to generate smooth subdivision schemes. Finding smoothing masks of these new refinements and their multiresolution filters can be a future work. ACM is designed for semiregular models and models obtained from adaptively subdividing patches. Extending ACM to support meshes that have a combination of regular patches and irregular connectivity is also a future work. One possibility is to combine ACM with a known data structure such as half-edges that can perform well for irregular patches of the mesh.